B Microsoft
Wl Azure

Extant Challenges to Efficient HSM Integration with
Cloud-deployed Lustre

Ellis Wilson



Agenda

Review of HSM Architecture in Lustre

Typical On-Premise HSM/DR Usage

New Usage Patterns in Cloud-deployed Lustre
Architectural Challenges

Potential Areas of Improvement




Review of HSM
Architecture in Lustre



Hierarchical Storage Management (HSM)

A software architecture or framework that facilitates the movement of
data between cost- and performance-differentiated storage tiers

Leadership examples of HSM perform this movement automatically, and
present a unified namespace to the end-user regardless of the location
of the data



The HSM Components of Lustre

- MDT (MDS node, kernel-space)
Tracks file state(s): NONE, EXISTS, DIRTY, RELEASED, ARCHIVED

Accepts HSM actions against files, translates these, and sends HSM

commands to Coordinator

- HSM Coordinator (MDS node, kernel-space)

Receives HSM commands from and communicates status back to MDT
+ Queues HSM work
Registers, sends work to, and communicates with CopyTools on work status

- CopyTool (Client node(s), user-space)
Registers locally to receive HSM work from Coordinator
Data mover that understands how to send/receive data to/from lower tier

- Policy Engine (Client node, user-space) (optional)
Initiates HSM commands against files in accordance with user-specified

policies

\IDN

n

CopyTool

Policy Engine




(Simplified) Diagram of HSM Architecture in Lustre

‘m N

Cloud Object

/ \ Storage /

Foreground Clients Lustre Server Components and Clients Delegated to HSM Tasks HSM/DR Cold Tier

N



Note on the External Policy Engine

- While optional, without it most operations are manual

- No component internal to Lustre automatically archives or releases cold data
- Intractable to manage a very large namespace this way

- Robinhood is the most popular incarnation

- Tracks full namespace of Lustre in SQL tables
+ Crucial to quickly answering: Since time T, what has changed?
- Utilizes Lustre changelogs to efficiently track changes to system after
initial filesystem walk
- Users can build policies to be carried out on events

- E.G,, archive+release files sufficiently cold when above some capacity
threshold



Typical On-Premise
HSM/DR Usage



HSM vs DR

A

- HSM, like RAID, is not Backup

- HSM solves the problem of how to accelerate the working set at

the hottest tier of storage
- Disaster Recovery (DR) solves the problem recovering from partial
or total system failure

- On-premise solutions may employ one or both

- Replication targets may vary:

- Another Lustre cluster (e.g., via lustre_rsync and changelogs)

- A different filesystem or object storage entirely (e.g., Azure Blob
object storage)



Typical On-Premise HSM/DR Usage

- Lifetime in Years: Storage architecture designed for 3+ years

- HSM cold storage is deployed with a similar lifespan
- Storage capacity and performance requirements are dictated by the most demanding jobs

- Adding storage can be difficult so usually sized entirely up-front
- One-time Initial Standup Cost

- Deployment/ingest may be very heavy, but should be a one-off
- If moving between clusters initial Robinhood scan or DR replication may take days to weeks

- Track Changelogs: HSM or DR post-standup just track changes
- New data is added; old data tends to not change
- Robinhood and nightly replications (usually) process tractable amounts of churn

- Non-critical Path HSM/DR

- DR and HSM tasks are rarely on any critical paths for the parallel file system
- Archive+release of cold files may in fact be purposefully delayed until non-peak hours



New Usage Patterns in
Cloud-deployed Lustre



New HSM/DR Patterns for Cloud-Deployed Lustre
- Hyper Transiency

- Lustre clusters are erected on-demand for days, weeks, or months
- "Scratch cleanup” achieved by full cluster deletion

- One B \Y
ne Becomes Many

J% - Trivial to deploy more Lustre filesystems and clients as jobs require

Avoids idle compute, network, and storage and side-step |I/O contention
Resiliency achieved by cloud components rather than FLR or similar
Not-so-distant-future: imagine PBS jobs that specify Lustre cluster parameters

8

. FuIIy Amorphous Cold Tier

- HSM “cold storage” is unbounded, unsized object storage
- Sole sizing to be done recurringly is how much data has value to persist



Architectural Challenges



Performance Challenges from New Use Patterns
- Multiple arms of Lustre HSM enter the critical path:

- Time-to-Hydrate
-+ On job start would like to standup just the namespace without the data
- Lustre HSM import works, but is performance-constrained

- Time-to-Restore
- Without explicit user pre-restoration, delays on every accessed file in released state

- Time-to-Archive
- On job completion, the faster the customer can archive results and tear-down the better
- Robinhood can struggle to keep up with massive changelog generation from ingest+churn



Architectural Impedance Mismatches
- Many aspects of Lustre HSM work great for cloud-deployed Lustre:

+ Perfect match for initial hydration of just metadata
- Perfect match for erecting a job-sized Lustre FS atop a massive object store
- Perfect match for solely archiving changed data

- Some architectural mismatches due to differing use-case:
- Directories: Not supported whatsoever in Lustre HSM
+ Minor file modifications: CopyTools today operate against the entire file
- "Unique” file types: symlinks, hard-links, sparse files
- Striping and Extended Attributes: Not restorable via import API or tracked for archive
- File attribute changes: May not trigger needs-archive in Lustre HSM
- Directory renames: hierarchical filesystem vs. full-path-indexed object filesystem

- At the end of Archive, would like a mirror achieved in the Cold Tier



Potential Areas for
Improvement



Potential (Tractable) Areas for Improvement
- Metadata Hydration:

- Batch version of the import API (e.g., single syscall per smallish directory)
- Reduced overhead checking mounts and taking locks
- Implement support for setting stripes

- Data Restoration:;

- Restore-ahead — perhaps leverage stat-ahead existing code in a cautious manner
- Batching improvements to the CopyTool API

- Final Archival:

- Batching improvements to the CopyTool API
- Native support for directories in HSM code (reach goal)



Examining Time-to-Hydrate Metadata

- Benchmarked using a very
small (~50 LOC) pthread-

enabled C program

- Unique directory per-thread

- Each thread calls llapi_hsm_import serially
against 10,000 files within directory

- Peaks at roughly 1/4 the rate this node
can perform normal file creation

- Lustre 2.14.0

Hydrations/s

2000

1800

1600

1400

1200

N
o
o
o

800

600

400

200

Single-node Hydration Rate

7 8 9 10 11 12 13 14 15 16
Thread Count



Bottlenecks in llapi_hsm_import
- On/Off CPU flamegraphs shown

Benchmark at 16 threads

-+ On-CPU time is very low
0.62% at 1 thread, 5.9% at 16 threads

- Off-CPU shows many RPCs (6+)
required to achieve relatively
stralghtforward task of import

Most time spent following ptlrpc_set_wait
ll_lov_setstripe consumes 3 and doesn’t even end
up setting stripe

Can improve by bumping max_rpcs/peer_credits,
but band-aid

Off-CPU Time Flame Graph

- Craft a new import API that imports
In batches and relaxes some
guardrails during initial cloud import?




In Summary

- Existing HSM code lays solid foundation for transition to cloud

- Many applications of Lustre HSM in the cloud are very different than on-prem

+ Cloud vendors need to show greater engagement with Lustre community
- E.g., Discuss with Lustre developers on more substantive changes (e.g., enabling HSM directory change tracking)

- Careful performance analysis required to make this successful
- Time-to-{Hydrate,Restore,Archive} will need study and optimizations

- Improvements for cloud-deployed Lustre lift on-prem Lustre boats
- Metadata hydration, data restoration, and archival are critical regardless of location



B Microsoft
Wl Azure

Thank you!

Questions?



