
Artem Blagodarenko / Colin Faber

Client-Side Data Compression

whamcloud.com

Transparent client-side data compression & decompression

► Why develop this feature?

o Reduces cost per-GB of data stored
o Inexpensive way to improve interconnect bandwidth
o Clients are easier to scale than servers

► The Lustre client-side data compression (CSDC) feature provides a
transparent mechanism to compress and decompress data on Lustre clients

oConfigurable per file/directory via standard Lustre tools
oMultiple compression algorithms supported (and more can be added)
o Transparent to end-users when configured by admin
o Scalable compression speed with number of client CPU cores

whamcloud.com

What’s different about this compression method?

► Client-based compression model
• Compressed data stored on the servers, compressed and decompressed only on the clients

► Works with LDISKFS based file systems
• No changes to LDISKFS on-disk data structures

► Provides support for popular compression algorithms
• Currently lzo, lz4, lz4hc and gzip

► Easy to expand framework to add new compression types
• Up to 255 compression types possible, selectable on a per-file/directory or per-component basis

► Does not depend on ZFS compression on the server
• Transparent ZFS compression integration possible in the future

whamcloud.com

Features

► In-kernel lzo algorithm available for all client kernel versions

► Backport modern kernel lz4 algorithm (and variants), for older kernels
• Balance compression/decompression speed and space usage

► Per-file component enable / disable compression algorithm, level, chunk size

► Can be set as default for directory tree or whole filesystem

► Existing files can be (re)compressed after write, or during migration to slower storage

► Transparent compressed write / read to the application

► Older clients will see compressed files, but not be able to read / write data

► Compatible with other Lustre features (migration, mirroring, encryption*, pools, quota, etc.)

► No on-disk data structure changes necessary

whamcloud.com

Tools changes to enable/check compressed files

► 'lfs setstripe' to set file layout components using data compression
• --compress|-Z <type>[:<level>] Set component compression algorithm type and level (1-15)
• --compress_chunk=<size> Compression chunk size, adjust to power-of-two multiple of 64KiB, <= stripe_size

Example:
$ lfs setstripe –E eof -Z lz4:5 --compress-chunk=512k <dir|new_file>

► 'lfs getstripe' to show compressed component parameters
Example:
$ lfs getstripe <file> | grep compr
lcme_compr_type: lz4
lcme_compr_lvl: 5
lcme_compr_chunk_kb: 512
lmm_pattern: raid0,compress

whamcloud.com

Tools changes to enable/check compressed files (cont.)

► 'lfs find' to search for (un-)compressed files
• --comp-flags=[^]compress to locate file with/without compressed components
• --comp-flags=[^]nocompr to locate file with/without setting component compress preference
• [!] --layout=compress to locate file with/without compressed components
• [!] --compress-type=<type> find files with/without specified compress algorithm
• [!] --compress-level=[+-]<level> find files with/without specified compress level

Examples:
• Find already compressed files
$ lfs find --comp-flags=compress <dir>
• Find compressed files with type other than lz4 (e.g. to recompress with lz4 in background)
$ lfs find --compress-type=^lz4 <dir>
• Find compressed files with level < 5 (e.g. to recompress to a higher level)
$ lfs find --compress-level=-5 <dir>

whamcloud.com

► Compress data on client in chunks (64KiB-1MiB+)
• Keep "uncompressed" chunks for incompressible data/file (.gz, .jpg, .mpg, …), chunks

► Client writes/reads whole chunk(s), (de-)compresses to/from RPC staging buffer
• Independent/parallel compression for each request on separate core to reach GB/s speeds
• Larger chunks improve compression, but higher read-modify-write overhead

► Optional write to uncompressed file mirror for random IO pattern
► Optional data (re-)compression during mirror/migrate (via transfer agent)

Data Compression Pipeline

Client RAM

RPC staging buffer

OST object storage

64KiB 64KiB64KiB64KiB
Incompressible data
kept unchanged Uncompressed Data

Compression Header

Compressed Data

4KB Alignment Padding

24KiB 64KiB30KiB 37KiB

24KiB 64KiB30KiB 37KiB

… 1MB of chunks …

…

…

whamcloud.com

LDISKFS allocator changes for improved data density

► Compression will always reduce data size by at least one 4KB block, or it is skipped

► OST will write chunks starting at file logical offset for each chunk to LDISKFS
• Client must read and write whole chunks starting at an even multiple of the chunk offset

► From LDISKFS perspective compressed chunks have holes between them in file/block allocation
• For example, 64KiB chunk compressed to 24KiB the next chunk will have a 40KiB "hole” from LDISKFS logical

offset perspective

► Optimize on-disk blocks to be contiguous

► Client sends OBD_BRW_COMPRESSED flag with each compressed write RPC

► Flag informs allocator that holes will never be filled, and should pack chunks densely

whamcloud.com

LDISKFS changes to avoid allocation holes in files
0 64 128

LDISKFS optimization. These blocks normally reserved for multi-client interleaved writes, but in case of
compression these blocks will be unused. Gaps decrease read performance (for HDDs) and add fragmentation.

LDISKFS receives OBD_BRW_COMPRESSED flag and disables the optimization.
Blocks are being written sequentially. This optimizes writing and reading.

0 64

Newly written blocks Free blocks

128

whamcloud.com

Compression algorithms performance

► Given by kcompr.ko test module results

► Compare lz4, lz4hc, lzo and gzip algorithms with different chunk sizes

► 3 different input files to compress/decompress:
• Synthetic binary data
• Text file made of Lustre sources
• HDF ocean climate data from https://nsidc.org/data/ae_dyocn/versions/2

►Comprehensive performance testing is on-going

https://nsidc.org/data/ae_dyocn/versions/2

whamcloud.com

Userland compression algorithm testing: Synthetic data

whamcloud.com

Userland compression algorithm testing: Text data

whamcloud.com

Userland compression algorithm testing: HDF5 climate data

whamcloud.com

Performance of compression algorithms & considerations

►Performance and compression ratio depend on the data being compressed
• Ability to define algorithm, level and chunk size per directory or file component

► Compression algorithms and chunk size settings have different demands on CPUs

► Compression buffer pools allocate client memory

► Block allocation on target disks will behave differently for compressed data

► Flash based targets will yield the best overall performance for compressed data as
allocator determinations have less impact

whamcloud.com

A simple demonstration of CSDC with sanity testing

== sanity test 460a: Compress/decompress text test 15:19:46 (1675178386)

Compression:
13+1 records in
13+1 records out
879690 bytes (880 kB, 859 KiB) copied, 0.0068837 s, 128 MB/s

Decompression:
13+1 records in
13+1 records out
879690 bytes (880 kB, 859 KiB) copied, 0.00628479 s, 140 MB/s

860K /usr/src/lustre/tests/sanity.sh
352K /mnt/lustre/d460a.sanity/sanity.sh
860K /tmp/decompressed_sanity.sh

860 -rwxrwxr-x 1 ubuntu ubuntu 879690 Jan 31 15:11 /usr/src/lustre/tests/sanity.sh
352 -rw-r--r-- 1 root root 879690 Jan 31 15:19 /mnt/lustre/d460a.sanity/sanity.sh
860 -rw-r--r-- 1 root root 879690 Jan 31 15:19 /tmp/decompressed_sanity.sh

74dcbb585d95ffe21e3cee5c6fb38f92 /usr/src/lustre/tests/sanity.sh
74dcbb585d95ffe21e3cee5c6fb38f92 /mnt/lustre/d460a.sanity/sanity.sh
74dcbb585d95ffe21e3cee5c6fb38f92 /tmp/decompressed_sanity.sh

lfs setstripe -Eeof -Z lzo --compress-chunk=64k sanity.sh

Original data
Compressed data
Decompressed data

whamcloud.com

What about a ZFS backend?

► Can a ZFS backend be used with CSDC?
• Possibly yes (untested), to store compressed data directly to ZFS OST objects
• Further development/integration needed to properly integrate with ZFS compression
• Client may need to use different compression types/header to fully integrate

► CSDC is focused on LDISKFS, however nothing prohibits ZFS as a backend
• If issues arise, they can be fixed/optimized by handling OBD_BRW_COMPRESSED flag on the server

► ZFS copy-on-write approach assumes a new block allocation on every write
• Holes in file allocation are less of a problem, which differs from LDISKFS

whamcloud.com

When is this feature expected?

► CSDC is planned to be available with the Lustre 2.17 release
• Will likely need both client and server updates to fully support

► Major functionality under development right now
• Basic client, server, and user tool changes already implemented
• Further optimizations and cross-feature integration ongoing

► CSDC specific testing for performance and stability - on-going

► Feature under active development since October 2022

Thank You!
Questions?

