
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Advanced Lustre File Layouts

Rick Mohr

Senior HPC Systems Engineer

Oak Ridge National Laboratory

22 Open slide master to edit

Overview

This tutorial will cover…
– Normal file layouts
– Progressive File Layouts (PFL)
– Data on MDT (DoM)
– File Level Redundancy (FLR)
– Self-Extending Layouts (SEL)

… but it will NOT cover
– Directory striping
– Choosing file layouts to optimize I/O performance

Presenter
Presentation Notes
This tutorial will cover some of the advanced file layouts available in Lustre. (NOTE: This will not cover directory striping.)

If we run out of time, slides will be posted so that the examples can be reviewed.

33 Open slide master to edit

Normal File Layouts

• File is split into chunks and distributed across selected Object
Storage Targets (OSTs) in round-robin fashion

• Splitting is controlled by two main parameters
– Stripe count
– Stripe size

Example:
stripe_count = 3
stripe_size = 1 MB

1 2 3 4 5 6 7 8

1 MB

8 MB File

1
4
7

2
5
8

3
6

Presenter
Presentation Notes
This layout is usually the most familiar to users.

They will typically adjust the stripe count but may also adjust the stripe size if they are familiar with their I/O patterns.

44 Open slide master to edit

Setting File Stripe Parameters

• File striping is controlled with the lfs setstripe command
lfs setstripe –c 3 –S 1M data

• File must not exist before running lfs setstripe
lfs setstripe: setstripe error for 'data': stripe already set

• Other striping options
-i|--index = Choose starting OST index for striping (default = -1)
-o|--ost = Specify OST indices to use
-p|--pool = Choose OSTs from the specified OST pool (default = none)

Presenter
Presentation Notes
File layouts are controlled using the “lfs setstripe” command. The command shown here sets a layout that matches the diagram on the previous slide.

Note: The file must not exist prior to running this command otherwise an error will result.

Many other striping options exist, but most of those are use for more advanced layouts (which we will discuss in a little while). Some other options for standard file layouts are –i, -o, and –p. Typically users should not use –i or –o unless they really know what they are doing. The –p option might be useful to normal users if the file systems has different tiers of storage.

For the –i option, a value of -1 indicates that Lustre should chose the starting OST.

55 Open slide master to edit

Viewing File Stripe Parameters

• Use lfs getstripe to view the layout for a file

[tmp]# lfs getstripe data
data
lmm_stripe_count: 3
lmm_stripe_size: 1048576
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: 2

obdidx objid objid group
2 29564 0x737c 0xb00000417
7 29644 0x73cc 0xc00000403
6 29662 0x73de 0xe40000414

Allocated OSTs

Presenter
Presentation Notes
All file layouts can be viewed using ”lfs getstripe”. Several fields are printed, and we can see the stripe count and stripe size that were chosen for “lfs setstripe” (highlighted in yellow). The output also shows us exactly which OSTs were assigned to the file.

Notice that the stripe offset matches the index of the first OST.

66 Open slide master to edit

Progressive File Layouts (PFL)

77 Open slide master to edit

Progressive File Layouts (PFL)

• PFL allows more control over a file’s layout
– Normal layout applies single stripe count and stripe size to entire file
– PFL can use different normal layouts on different parts of the file

(making it one of the types of composite layouts)
– Potentially optimize IO for files with non-uniform data structures

Component 1:
1 stripe @ 1 MB

Component 2:
4 stripe @ 1 MB

Component 3:
16 stripes @ 4 MB

… …

[0, 2M) [2M, 256M) [256M, EOF)

Presenter
Presentation Notes
You can think of PFL as an array of normal layouts that apply to different sections of the same file. This gives much greater control of a file’s layout if needed.

This can also be used by sys admins to mitigate the possibility of a user filling up an ost. The admin can define a default PFL layout that increases the stripe size as the file gets bigger.

88 Open slide master to edit

Creating PFL Layouts

• The -E|--component-end option is used to denote different
components in the layout

• General format:
lfs setstripe -E end1 <stripe_opts> -E end2 <stripe_opts> … <file>

• Example:
lfs setstripe -E 2M -c 1 -S 1M \

-E 256M -c 4 -S 1M \

-E -1 -c 16 -S 4M \

data.txt

Can also use -E eof

Presenter
Presentation Notes
The ‘lfs setstripe’ command is used with the –E option to define PFL layouts. The –E option defines the end of the extant where the subsequent file stripe options apply.

All the normal layout stripe options should be available to each component.

A “-1” or “eof” can be used to denote the end of the file.

99 Open slide master to edit

Creating PFL Layouts (cont.)

• Components must be specified in order
First component starts at offset = 0, next component starts where previous
component ends

lfs setstripe -E eof -c 16 -E 2M -c 1 data.txt

• First component inherits default values from parent/root
directory. Later components inherit values from previous
component.
lfs setstripe -E 2M -c 1 -S 1M -E 64M -c 4 -E eof –S 4M

stripe count = 1
stripe size = 1M

stripe count = 4
stripe size = 1M

stripe count = 4
stripe size = 4M

1010 Open slide master to edit

Lazy Initialization

• Lustre always allocates OSTs for the first component, but only
allocates OSTs for other components when needed.
#> lfs getstripe data.txt
data.txt

lcm_layout_gen: 3
lcm_mirror_count: 1
lcm_entry_count: 3

lcme_id: 1
lcme_mirror_id: 0
lcme_flags: init
lcme_extent.e_start: 0
lcme_extent.e_end: 2097152

lmm_stripe_count: 1
lmm_stripe_size: 1048576
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: 6
lmm_objects:
- 0: { l_ost_idx: 6, l_fid: [0xe40000414:0x7489:0x0] }

Presenter
Presentation Notes
Viewing a PFL layout is done in the same way as a normal layout: using ’lfs getstripe’.

The layout shown here corresponds to the 3-component PFL layout we defined for the diagram 2 slides back. (This slide only shows the first of the three components)

The red-highlighted line show the field that contains the number of components in the file. The yellow-highlighted lines show general parameters for the first component (component ID, start/end points for the component, and whether the component is initialized or not.). The green-highlighted lines show the layout information for the first component (stripe count, stripe size, and allocated osts).

1111 Open slide master to edit

Lazy Initialization (cont.)
lcme_id: 2
lcme_mirror_id: 0
lcme_flags: 0
lcme_extent.e_start: 2097152
lcme_extent.e_end: 268435456

lmm_stripe_count: 4
lmm_stripe_size: 1048576
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: -1

lcme_id: 3
lcme_mirror_id: 0
lcme_flags: 0
lcme_extent.e_start: 268435456
lcme_extent.e_end: EOF

lmm_stripe_count: 16
lmm_stripe_size: 4194304
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: -1

Components not initialized

No OSTs assigned

Presenter
Presentation Notes
This slide shows the other 2 components of the PFL layout.

Notice that neither of these components is initialized immediately after the file is created (as is evidenced by the lcme_flags=0 and lmm_stripe_offset=-1).

Yellow-highlighted fields show component-level parameters while the green-highlighted fields show the layout striping parameters for each component.

1212 Open slide master to edit

Lazy Initialization (cont.)

• Writing data will cause components to be initialized on-the-fly

• After 2M is written, Lustre initializes second component
dd if=/dev/zero of=data.txt bs=1M count=4

lcme_id: 2
lcme_mirror_id: 0
lcme_flags: init
lcme_extent.e_start: 2097152
lcme_extent.e_end: 268435456

lmm_stripe_count: 4
lmm_stripe_size: 1048576
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: 7
lmm_objects:
- 0: { l_ost_idx: 7, l_fid: [0xc00000403:0x746e:0x0] }
- 1: { l_ost_idx: 8, l_fid: [0xc4000040e:0x7457:0x0] }
- 2: { l_ost_idx: 12, l_fid: [0xe80000419:0x2a75:0x0] }
- 3: { l_ost_idx: 1, l_fid: [0xac000040e:0x74c1:0x0] }

Presenter
Presentation Notes
When a client attempts to write data to a component that has not yet been initialized, I/O will pause until Lustre allocates OSTs for the next component.

This snippet from ”lfs getstripe” shows that the second component was initialized after writing 4MB to the file. The third component (not shown) remains uninitialized. The yellow-highlighted fields show some key parameters:
lcme_flags is now set to “init” instead of “0”
4 osts have been allocated to the component
lmm_stripe_offset matches the index of the first allocated ost

Once allocated, the OSTs for a component remain allocated. So truncating a file will not cause later components to unallocated their OSTs.

1313 Open slide master to edit

Dynamic Layout Changes

• With lazy initialization, only the first component is required to be
specified when the file layout is set

• Other components can be added (and even deleted)
dynamically using lfs setstripe

• There are some caveats:
– Components can only be deleted starting from the last one
– Deleting a component will cause all data in that component to be lost
– Cannot write past the end of the last component

Presenter
Presentation Notes
PFL does not allow ”holes” in the layout, so the only component that can be deleted is the last component.

Be careful when deleting a component. If there is data in that component, you will not be prompted before it is deleted.

1414 Open slide master to edit

Dynamic Layout Example
[tmp]# lfs setstripe -E 2M -c 1 data.txt

[tmp]# dd if=/dev/zero of=data.txt bs=1M count=1
1+0 records in
1+0 records out
1048576 bytes (1.0 MB, 1.0 MiB) copied, 0.00139419 s, 752 MB/s

[tmp]# lfs setstripe --component-add -E 10M -c 4 data.txt

[tmp]# lfs setstripe --component-add -E -1 -c 8 data.txt

[tmp]# dd if=/dev/zero of=data.txt bs=1M count=20
20+0 records in
20+0 records out
20971520 bytes (21 MB, 20 MiB) copied, 0.0671822 s, 312 MB/s

[tmp]# ls -lh data.txt
-rw-r--r-- 1 root root 20M May 2 01:40 data.txt

Create initial component…

…then add
two more

Data extends
Into the third
component

Presenter
Presentation Notes
We can start the file with just a single component and then immediately begin adding data to it. But before we reach the end of the first component, we extend the layout with two more components that cover the rest of the file. After that, we can write data as far as we want into the file.

1515 Open slide master to edit

Dynamic Layout Example (cont.)

[tmp]# lfs setstripe --component-del -I 3 data.txt

[tmp]# ls -lh data.txt
-rw-r--r-- 1 root root 10M May 2 01:40 data.txt

[tmp]# dd if=/dev/zero of=data.txt bs=1M count=20
dd: error writing 'data.txt': No data available
11+0 records in
10+0 records out
10485760 bytes (10 MB, 10 MiB) copied, 0.00900609 s, 1.2 GB/s

Deleting last
component…

…truncates the file and
destroys data in the
deleted component

Can’t write past end of
the last component

component index*

*Not necessarily sequential. Check lcme_id field in output from lfs getstripe

Presenter
Presentation Notes
The lcme_id field of each component appears to be tied to the lcm_layout_gen field which contains a generation number that increments whenever there is a change to the layout. This prevents collisions or re-use of the same component index as the layout changes.

1616 Open slide master to edit

Other Useful Commands

• Component-related options for lfs getstripe
(Check man page for full set of options)

lfs getstripe --component-count <file>

lfs getstripe –I2 <file>

lfs getstripe --component-flag=init <file>

• Use the lfs migrate command to change a normal layout to PFL
(and vice versa)

lfs setstripe -c 1 data.txt

dd if=/dev/zero of=data.txt bs=1M count=100

lfs migrate -E 2M -c 1 -E 20M -c 4 -E -1 -c 16 data.txt

List number of
components

List component with id=2

List only initialized
components

Presenter
Presentation Notes
These are just a few of the component-specific options available for lfs getstripe. (NOTE: There seems to be a mistake in the online manual. It shows using the “-I” option to list the indices of all components in a file. In my testing, it only listed the last initialized component.)

NOTE: Make sure there is not space between “-I” and “2”. Otherwise you will get an error.

1717 Open slide master to edit

Important Note About File Appends

• Components are normally only initialized when data is written
to them…except in the case of file appends

[tmp]# lfs setstripe -E 100M -c 1 -E 10G -c 4 -E -1 -c -1 data.txt

[tmp]# lfs getstripe data.txt

[tmp]# dd if=/dev/zero of=file.txt bs=1M count=1

[tmp]# lfs getstripe data.txt

[tmp]# echo "This is a test" >> data.txt

[tmp]# lfs getstripe data.txt

Only first
component
is initialized

All components
Initialized!!

Presenter
Presentation Notes
Appending to a file will cause all components to be initialized even if there is no data in those components.

1818 Open slide master to edit

Data on MDT (DoM)

1919 Open slide master to edit

DoM Basics

• DoM layouts are intended to improve small file I/O
performance by placing all (or part) of the file on the MDT

• A DoM layout is a composite layout (and is actually just a
special case of PFL)
– Only the first component resides on the MDT
– The first component always has stripe_count = 1
– The MDT used for the first component is the same MDT that stores the

inode for the file
MDT

Component:
1 stripe @ 1 MB

OST Component:
4 stripe @ 4 MB

[0, 1M) [1M, EOF)

Presenter
Presentation Notes
There could be uses for DoM even for larger files (ex - a structured file that begins with a small header describing the layout for the rest of the file’s data).

2020 Open slide master to edit

Creating DoM Layout

• DoM layout are created in a similar fashion to PFL layouts
lfs setstripe -E <end1> -L mdt -E <end2> [stripe_opts]…

• Example:
lfs setstripe -E 1M -L mdt -E eof -c 4 -S 4M dom_file

MDT
Component:

1 stripe @ 1 MB
OST Component:

4 stripe @ 4 MB

[0, 1M) [1M, EOF)

Presenter
Presentation Notes
The ‘--layout’ option could also be used instead of ‘-L’

2121 Open slide master to edit

Displaying DoM Layout
[tmp]# lfs getstripe dom_file

dom_file
lcm_layout_gen: 2
lcm_mirror_count: 1
lcm_entry_count: 2
lcme_id: 1
lcme_mirror_id: 0
lcme_flags: init
lcme_extent.e_start: 0
lcme_extent.e_end: 1048576
lmm_stripe_count: 0
lmm_stripe_size: 1048576
lmm_pattern: mdt
lmm_layout_gen: 0
lmm_stripe_offset: 0

lcme_id: 2
lcme_mirror_id: 0
lcme_flags: 0
lcme_extent.e_start: 1048576
lcme_extent.e_end: EOF
lmm_stripe_count: 4
lmm_stripe_size: 4194304
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: -1Pattern is ’mdt’ instead of ‘raid0’

stripe size = extent end

DoM layout looks nearly
identical to a PFL layout

Presenter
Presentation Notes
Since a DoM layout is just a type of PFL layout, they are displayed almost identically. The key differences are:
Stripe size will always match the extent end (green-highlighted fields)
The stripe count will be ‘0’, although more accurately it is ‘1’ (red-highlighted field)
The pattern is ‘mdt’ instead of ‘raid0’ (blue-highlighted field)

This doesn’t seem to show which mdt the first component resides on. You can get the mdt for the file using “lfs getstripe –m <file>”, and this same mdt will contain the first component of the file.

2222 Open slide master to edit

DoM for Sys Admins

• System administrators can control the maximum size of the
DoM components

• On the MDS server, run
lctl set_param –n lod.*MDT<index>*.dom_stripesize=<max>

or
lctl set_param -P lod.*MDT<index>.lod.dom_stripesize=<max>

• For the dom_stripesize value:
– Default value is 1 MB
– No smaller than 64 KB and no larger than 1 GB
– Must be 64 KB aligned

Temporary

Persistent

Presenter
Presentation Notes
The dom_stripesize values are set on a per-MDT basis. So it is possible for two MDTs in the same file system to have different values.

If dom_stripesize is set to a value below 64K, the lctl command will not return an error and it will appear to have worked. But when you query the value of the parameter, you’ll find that dom_stripesize is just set to its minimum value of 64 KB.

However, if you try to set dom_stripesize to a value above 1 GB, you wil receive a “numerical result out of range” error, and its value will remain unchanged.

If the value is not 64 KB aligned, it will silently round down the value to the nearest 64 KB aligned value and use that as the value.

2323 Open slide master to edit

Dom for Sys Admins (cont.)

• DoM can be disabled by setting dom_stripesize to 0
– This can be done on a per-MDT basis as well

• This will disable DoM component creation for any new files or
layouts
– Existing files with DoM components will remain unchanged
– If a directory has a default layout defined that contains a DoM

component, new files in that directory can still be created with DoM
components

• DoM files can be identified using lfs find
lfs find <dir> -L mdt

2424 Open slide master to edit

File Creation with DoM Disabled

If DoM is disabled, attempting to create a DoM file will not fail. The layout
just gets automatically altered.
[tmp]# lfs setstripe -E 1M -L mdt -E eof -c 2 dom_file

[tmp]# lfs getstripe dom_file
dom_file

lcm_layout_gen: 1
lcm_mirror_count: 1
lcm_entry_count: 1

lcme_id: 1
lcme_mirror_id: 0
lcme_flags: init
lcme_extent.e_start: 0
lcme_extent.e_end: EOF

lmm_stripe_count: 2
lmm_stripe_size: 1048576
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: 4
lmm_objects:
- 0: { l_ost_idx: 4, l_fid: [0xb8000041e:0x743c:0x0] }
- 1: { l_ost_idx: 10, l_fid: [0xcc000041a:0x73be:0x0] }

2525 Open slide master to edit

File Level Redundancy (FLR)

2626 Open slide master to edit

File Level Redundancy (FLR)

• FLR allows users to define one or more mirrors for a file to
provide extra data protection.

• When writing to a mirrored file, only one of the mirrors is
updated. Other mirrors are marked as stale and need to be
resynced.
– This is the “FLR Delayed Write” implementation

• All mirrors (that are not stale) can be used for reading data
– Can be used to improve read performance for files that are accessed

by many processes in parallel

2727 Open slide master to edit

Creating FLR Layouts

• Unlike other file layouts, this one does not use lfs setstripe.
Instead, there is a special lfs mirror command.

lfs mirror create -N[count] [stripe_opts] [--flags=<flags>] … <file>

• The mirrors can be either normal layouts, composite layouts, or
a mixture of both

Two mirrors have the
same normal layout

Third mirror uses
PFL layout

lfs mirror create -N2 --flags=prefer -c 2 -N -E 10M -c 1 -E eof -c 4 data.txt

Presenter
Presentation Notes
The “-N” option without a value is equivalent to “-N1”. The long option --mirror-count can also be used instead of –N.

The stripe options are the same as those used by normal and PFL layouts. The ones most commonly used will probably be stripe count, stripe size, and ost pool.

The only option supported by --flags is “prefer”. This gives Lustre a hint about which mirrors it should try to use for I/O, but there is no guarantee that the preferred mirrors will be used.

2828 Open slide master to edit

Displaying FLR Layouts
[tmp]# lfs getstripe data.txt
lcm_mirror_count: 3
lcm_entry_count: 4
lcme_mirror_id: 1
lcme_flags: init,prefer
lcme_extent.e_start: 0
lcme_extent.e_end: EOF
lmm_stripe_count: 2
lmm_stripe_size: 1048576
lmm_objects:
- 0: { l_ost_idx: 7, l_fid: [0xc00000403:0x7479:0x0] }
- 1: { l_ost_idx: 6, l_fid: [0xe40000414:0x7493:0x0] }

lcme_mirror_id: 2
lcme_flags: init,prefer
lcme_extent.e_start: 0
lcme_extent.e_end: EOF
lmm_stripe_count: 2
lmm_stripe_size: 1048576
lmm_objects:
- 0: { l_ost_idx: 15, l_fid: [0xdc0000419:0x2acf:0x0] }
- 1: { l_ost_idx: 9, l_fid: [0xc80000405:0x73e4:0x0] }

Note: Some fields
omitted for brevityNumber of mirrors

Each mirror has unique ID

Presenter
Presentation Notes
Even though FLR uses a different command to create the layout, it is still viewed using “lfs getstripe”. (Some fields are omitted for clarity. One field in particular that is missing is the lcme_id field that uniquely identifies each component.)

The output show there are 3 mirrors, but there are a total of 4 components since the third mirror has a PFL layout. This slide also show details on the first two mirrors. They use the same layout (stripe count = 2 across the entire file) but they have different OSTs assigned to them.

Note that they are identified by different lcme_mirror_id fields.

Yellow-highlighted fields describe the number of components/mirrors in the file. The blue- and red-highlighted fields are for the first and second component respectively. Note that the values are identical except for the lcme_mirror_id field which uniquely identifies each mirror.

2929 Open slide master to edit

Displaying FLR Layouts (cont.)

lcme_mirror_id: 3
lcme_flags: init
lcme_extent.e_start: 0
lcme_extent.e_end: 10485760
lmm_stripe_count: 1
lmm_stripe_size: 1048576
lmm_objects:
- 0: { l_ost_idx: 0, l_fid: [0xe00000416:0x73f9:0x0] }

lcme_mirror_id: 3
lcme_flags: 0
lcme_extent.e_start: 10485760
lcme_extent.e_end: EOF
lmm_stripe_count: 4
lmm_stripe_size: 1048576
lmm_stripe_offset: -1

All components in the same mirror have identical lcme_mirror_id fields

Only first component
of PFL is initialized

Presenter
Presentation Notes
The last two components have the same lcme_mirror_id because they are part of the PFL layout that comprises the third mirror.

The green-highlighted fields are intended to emphasize two things:
These two component are part of the same mirror
The extents are non-overlapping and cover the entire range of the file

3030 Open slide master to edit

Resync and Verify

• When writing data, the lcme_flags field for some
components may change to indicate they are out of sync:
lcme_flags: init,prefer

lcme_flags: init,stale,prefer

• This is fixed by running
lfs mirror resync <file>

• Mirrored data can also be checked for consistency
lfs mirror verify <file>

data written

3131 Open slide master to edit

Extending a Mirrored File

• Additional mirrors can be added to an existing file

lfs mirror extend –N[mirror_count] [stripe_options] … <file>

– If the file is not a mirrored file already, it will be converted to one
– Existing data is copied to the new mirror

• An existing file can also be added as a mirror to another file

lfs mirror extend [--no-verify] –N –f victim_file <file>

– The user needs to ensure that victim_file contains the same data

Presenter
Presentation Notes
When using a victim file, Lustre will verify that the data matches or else it returns an error. If the user is sure that the files match, the --no-verify option can be added to skip this verification check.

If successful, the victim file will be removed from the file system namespace.

3232 Open slide master to edit

Splitting a Mirrored File

• A specified mirror can be split from a mirrored file into its own
separate file

lfs mirror split –mirror-id <ID> [-f <new_file>] <mirrored_file>

• If the –f option is not used, then the default name for the new
file will be <mirrored_file>.<mirror_id>

• To destroy the mirror instead of splitting into its own file, just use
the –d|--destroy option instead of -f

3333 Open slide master to edit

Self-Extending Layouts (SEL)

3434 Open slide master to edit

Self-Extending Layouts

• SEL is an extension of the PFL feature that allows the MDS to
change the PFL layout dynamically if it detects OSTs running
low on space

• PFL delays instantiation of some components

• SEL splits non-instantiated components into two parts
1. An extendable component that is a regular PFL component covering

a part of the region
2. An extension component that is never instantiated and covers the

remainder of the region

Presenter
Presentation Notes
PFL delays instantiation, but when it finally does instantiate the component, that layout is used for the entire region without changes.

SEL basically turns a single component into two sub-components, although the second sub-component is never instantiated and just acts as a placeholder until the MDS decides what action to take when expanding the first sub-component.

3535 Open slide master to edit

PFL Component vs. SEL Component

[2 M, 18 M)
stripe count = 4

data
written

ost 22
ost 1

ost 3

ost 7

PFL

[2 M, 18 M)
stripe count = 4
ext size = 4 M

2 M 18 M

extension component
2 M 18 M

zero-length extendable component

data
written

SEL
2 M 6 M 10 M 18 M

[10 M, 18 M)
stripe count = 4
ext size = 4 M

ost 7
ost 1
ost 22
ost 3

Presenter
Presentation Notes
SEL alters the components on-the-fly. If the OSTs do not run low on space, then eventually the extension component shrinks to zero. At that point, the component is no different than the PFL layout.

SEL would probably be used by sys admins more than normal users. A sys admin could use SEL to define a layout that starts using storage on a “fast tier” that has smaller capacity. If the fast tier fills up, the file automatically switches to using at larger capacity “slow tier”.

3636 Open slide master to edit

Extension Policies
• The benefit of SEL comes from what it does when an OST starts

to fill up. There are four policies that handle various cases:
1. Extension – When OSTs in current component are not low on space,

continue using them (illustrated in the previous slide)
2. Spill Over – If current component is not the last component, and one

of the current OSTs is low on space, switch to next SEL component
3. Repeating – If current component is the last component and one of

the OSTs is low on space, create a new component with the same
layout as the current component (but using different OSTs)

4. Forced extension – If current component is the last component, and
an attempt to repeat the layout fails due to low space, just keep using
the current OSTs

3737 Open slide master to edit

Spill Over Policy

Component 1

2 M 6 M 10 M 18 M

[10 M, 18 M)
stripe count = 4
ext size = 4 M

ost 7
ost 1
ost 22
ost 3

Component 3

Component 2

Component 1

2 M 6 M 10 M

ost 7
ost 1
ost 22
ost 3

Component 3

Component 2

OST 3 fills up

Presenter
Presentation Notes
If an OST runs low on space, just abort the current component early and start using the next component. When component 3 gets instantiated, the MDS should choose osts that are not low on space.

3838 Open slide master to edit

Repeating Policy

Component 1 stripe count = 4
ext size = 4 M

ost 7
ost 1
ost 22
ost 3

Component 2

Component 1 stripe count = 4
ext size = 4 M

ost 7
ost 1
ost 22
ost 3

ost 4
ost 12
ost 2
ost 31

ost 5
ost 19
ost 21
ost 35

Component 1 stripe count = 4
ext size = 4 M

ost 7
ost 1
ost 22
ost 3

ost 4
ost 12
ost 2
ost 31

Presenter
Presentation Notes
If the SEL component is the last component, you can’t just abandon it early and move to the next component. Instead, the MDS will extend the component using the same layout, but with a different sent of OSTs. It can keep doing this is OSTs keep running out of space.

3939 Open slide master to edit

Creating a Self-Extending Layout

• Use the same command as for PFL…

lfs setstripe -E end1 <stripe_opts> -E end2 <stripe_opts> … <file>

• …but add a –z |--extension-size option with the other
stripe options

lfs setstripe –E 1G –z 64M –c 1 –E -1 –z 256M –c 4 data.txt

Presenter
Presentation Notes
From my testing, it looks like the minimum value for the extension size is 64MB, but it’s not clear why. This doesn’t appear to be documented in the Lustre manual.

4040 Open slide master to edit

Viewing Self-Extending Layout
[tmp]# lfs getstripe data.txt
data.txt
lcm_entry_count: 4
lcme_id: 1
lcme_flags: init
lcme_extent.e_start: 0
lcme_extent.e_end: 67108864
lmm_stripe_count: 1
lmm_stripe_size: 1048576
lmm_stripe_offset: 10
lmm_objects:
- 0: { l_ost_idx: 10, l_fid: [0xcc000041a:0x73c2:0x0] }

lcme_id: 2
lcme_flags: extension
lcme_extent.e_start: 67108864
lcme_extent.e_end: 1073741824
lmm_stripe_count: 0
lmm_extension_size: 67108864
lmm_stripe_offset: -1

Note: Only some of the output
fields are shown for brevity

Denotes extension component

Presenter
Presentation Notes
The green-highlighted fields illustrate that the initial range of the extendable component matches the extension size of the extension component.

The red-highlighted fields illustrate three things:
The lcme_flags field is set to “extension” for the non-instantiated extension component
The extension component always starts from the same spot that the extendable component ends
The end of the extension component matches the end of the region defined in the original ”lfs setstripe” command

4141 Open slide master to edit

Viewing Self-Extending Layout (cont.)
lcme_id: 3
lcme_flags: 0
lcme_extent.e_start: 1073741824
lcme_extent.e_end: 1073741824
lmm_stripe_count: 4
lmm_stripe_size: 1048576
lmm_stripe_offset: -1

lcme_id: 4
lcme_flags: extension
lcme_extent.e_start: 1073741824
lcme_extent.e_end: EOF
lmm_stripe_count: 0
lmm_extension_size: 268435456
lmm_stripe_offset: -1

Zero length extendable component

As extendable component grows,
the extension component shrinks

Presenter
Presentation Notes
The green-highlighted fields show that, prior to data being written, the extendable component starts out as a zero-length component. The red-highlighted fields denote some of the important fields in the non-instantiated extension component.

4242 Open slide master to edit

Acknowledgments

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

4343 Open slide master to edit

Questions ?

	Advanced Lustre File Layouts
	Overview
	Normal File Layouts
	Setting File Stripe Parameters
	Viewing File Stripe Parameters
	Progressive File Layouts (PFL)
	Progressive File Layouts (PFL)
	Creating PFL Layouts
	Creating PFL Layouts (cont.)
	Lazy Initialization
	Lazy Initialization (cont.)
	Lazy Initialization (cont.)
	Dynamic Layout Changes
	Dynamic Layout Example
	Dynamic Layout Example (cont.)
	Other Useful Commands
	Important Note About File Appends	
	Data on MDT (DoM)
	DoM Basics
	Creating DoM Layout
	Displaying DoM Layout
	DoM for Sys Admins
	Dom for Sys Admins (cont.)
	File Creation with DoM Disabled
	File Level Redundancy (FLR)
	File Level Redundancy (FLR)
	Creating FLR Layouts
	Displaying FLR Layouts
	Displaying FLR Layouts (cont.)
	Resync and Verify
	Extending a Mirrored File
	Splitting a Mirrored File
	Self-Extending Layouts (SEL)
	Self-Extending Layouts
	PFL Component vs. SEL Component
	Extension Policies
	Spill Over Policy
	Repeating Policy
	Creating a Self-Extending Layout
	Viewing Self-Extending Layout
	Viewing Self-Extending Layout (cont.)
	Acknowledgments
	Questions ?

