Unders

Glenn K. Lockwood, Ph.D.
Storage Architect
Advanced Technologies Group

May 9, 2022

Benchmarking, philosophically

BERKELEY LAB

®

U.S. DEPARTMENT OF

ENERGY

Office of
Science

Why do you want to benchmark storage?

Need a
number for
the press
release

Estimate
Need speedup

selection
criteria for for key

bids workload

Management
wants to
know
Need
acceptance
criteria for

acquisition Set user
expectation of

raven

Office of

- BERKELEY LAB (@ ENERGY | Jioes

Why do you want to benchmark storage?

Need a
number for
the press
release

Estimate
Need speedup

selection
criteria for O O for key
bids workload

Application
En” O Performance

Management

Need
acceptance
criteria for

acquisition Set user
expectation of

raven

Office of

- BERKELEY LAB (@ ENERGY | Jioes

How this shapes your approach to benchmarking

| should
| care measure cl:asrhe?ﬂllld
about... the biggest I ty
number sElet

by scale: maximize

svstem number without
syslem any means overwhelming

performance necessary clients/servers

application subject to I/0 sizes, layouts,

constraints of clients to match
performance reality app

i) BERKELEY LAB @ ENERGY | oo

ExperimentalDesign Benchmarking Process

Why are you How will you What did you What is the
benchmarking? benchmark? just uncertainty?
measure?
* To understand system * IOR, elbencho, ...? « Client DRAM? « Standard deviation?
 Bandwidth * mdtest, md-workbench, ...? * Network? * Multimodality?
* IOPS + 105007 + OSS DRAM? + Distribution shape?
+ Metadata « OSS HDD/SSD?

* To understand apps
+ Parallel checkpoint
+ Ensembles

Office of

i BERKELEY LAB (@ ENERGY | 372

Lustre performance in a nutshell

BERKELEY LAB

®

U.S. DEPARTMENT OF

ENERGY

Office of
Science

Lustre in principle

-

4 MiB file

\

Users and applications

oss1

0SS2

- Y
f p
1 MiB 1 MiB 1 MiB 1 MiB Client operating system

\ y
________________________________ N\

Lustre servers

J

Office of

Science

The speed of light still applies

compute node0

One compute node
can't talk to every
storage server at full
speed

chunkO chunk1 chunk?2 chunk3

Why dd is not useful
for testing
performance

i) BERKELEY LAB @ ENERGY | oo

The speed of light still applies

chunkO chunk3

One storage server
can't talk to every
chunkO compute node at full

chunk speed

chunk2
chunk3

i) BERKELEY LAB @ ENERGY | oo

The speed of light still applies

Accidental
imbalance caused
by a server failure

i BERKELEY LAB (@ ENERGY | ™=

The speed of light still applies

- - — - - - — - o= - - - - — -

B chunki chunk?2

Accidental

imbalance caused

by misalignment

Office of

i| BERKELEY LAB @ ENERGY

Science

The speed of light still applies

Overall goals when
doing 1/O to a PFS:

* Each client and
server handle the
same data volume

 Work around

gotchas specific to
the PFS
implementation

1| BERKELEY LAB (@ ENERGY |

The speed of light still applies

Overall goals when
doing 1/O to a PFS:

» Each client and
server handle the
same data volume

» Work around
gotchas specific to
the PFS
implementation

1| BERKELEY LAB (@ ENERGY |

Measuring bandwidth

with IOR

BERKELEY LAB

®

U.S. DEPARTMENT OF

ENERGY

Office of
Science

The IOR benchmark

MPI application benchmark

o reads and writes data in configurable ways
o 1/O pattern can be interleaved or random
Input:

o transfer size, block size, segment count

o interleaved or random

Output: Bandwidth and IOPS
Configurable backends

- POSIX, STDIO, MPI-IO

o HDF5, PnetCDF, S3, rados

https://github.com/hpc/ior

segment 1 <

segment 2 <

.

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

block for rank 0

block for rank 1

block for rank 2

block for rank 0

9|l Ul uonisod

block for rank 1

block for rank 2

P P D o

BERKELEY LAB (@ ENERGY | o7

First attempt at benchmarking an |/O pattern

« 120 GB/sec Lustre file system
* 4 compute nodes, 16 ppn, 200 Gb/s NIC

- Performance makes no sense
o write performance is awful
o read performance is mind-blowingly good

$ srun -N 4 -n 64 ./ior
Operation
write
read

Max (MiB)

539.38
123.04

segment 1

segment 2 =

=

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

block for rank 0
block for rank 1
block for rank 2
block for rank 0

block for rank 1

}block for rank 2

Office of

—_ ‘- ‘- ‘-

BERKELEY LAB (@ ENERGY

Science

Try breaking up output into multiple files

* |OR provides -F option to make each rank read/write to its
own file instead of default single-shared-file 1/0
o Reduces lock contention within file
o Can cause metadata load at scale

* Problem: > 400 GB/sec from 4 OSSes is faster than light

$ srun -N 4 -n 64 ./ior -t 1m -b 64m -s 64

Operation Max(MiB)
write 852.83
read 168.60

Office of
Science

Effect of page cache on measured I/O bandwidth

Time-resolved write bandwidth

* Unused compute node 4 clients / 256 GiB DDR each

memory to cache file contents 2 OSTs / 60 GB/s write spec
¢ Can dramat|CaIIy affeCt I/O) 150 Instantaneous Performance
o WriteS' g —— 0SS Hardware Limit
 only land in local memory at first %;100 B ot
* reordered and sent over network < el e
later 3 RN L PR N
* max_dirty_mb and € 50; AT I R R B
max_pages_per_rpc e
- Reads: &
. 0- '
* come out of local memory if data S o o o -/\ < < < K "
is already there o,b PO RS \:,, RO IS

» read-after-write = it’s already there

Office of

Science

Avoid reading from cache with rank shifting

« Use -C to shift MPI ranks by
one node before reading back

* Read performance looks
reasonable

* But what about write cache?

write phase

read phase

node0

node1

3
o
Q
®
N

(=}
4

&}
o
e}

block1
block2
block3

$ srun -N 4 -n 64 ./ior -t 1m -b 64m -s 64

Operation
write
read

Max(MiB)
692.33
303.09

block4
block5
block6
block7
block8

block9

block0
block1
block2
block3

block4
block5

block6 | block10
block7 | block11

block8

node3

block9

block10
block11

Office of
Science

Force sync to account for write cache effects

» Default: benchmark timer stops when last write completes

* Desired: benchmark timer stops when all data reaches OSSes
o Use -e option to force fsync(2) and write back all "dirty" (modified) pages
o Measures time to write data to durable media—not just page cache

» Without fsync, close(2) operation may include hidden sync time

$ srun -N 4 -n 64 ./ior -t 1m -b 64m -s 64

Operation Max(MiB)

write 121.02
read 847 .85

Office of

U.S. DEPARTMENT OF
@ ENERGY | I

Benchmark Time

4

write
write

o~

By default,
benchmark may
appear to hang at
the end when files
> Walltime are being closed

MPI Rank

write

MPI Barrier

Benchmark Time

i Wit -/ fsyne
time to write dirty
sync I
[pages to file
! system i included
I

MPI Rank

> Walltime
MPI Barrier

Office of

Science

Measuring bandwidth can be complicated

« 100x difference from same 000 aWrite

file system! 500 = Read

o Client caches and sync
o File per proc vs. shared file
o Usual Lustre stuff (e.g., striping)
* For system benchmarking,
start with -F -C -e 100
R N N

Naive File per FPP + shift FPP + shift
proc (FPP) + fsync

AN
o
o

IOR Throughput (GiB/s)
N w
8 8

| BERKELEY LAB (@ ENERGY | <

. IxOImunit ETI-e
IOR Acceptance Tests il =S b
Spectrum Scale Bandwidth 64 PB Spectrum Scale

7x IBM ESS GL&8c
6.048 HDDs

8 ppn used

Standard args:

-F File-per-process
-C Shift ranks

Results: -e include fsync(2) time
193,717 MB/s write (max)
162,753 MB/s read (max)

BERKELEY LAB (@ ENERGY | o

P L R = &
|IOR Acceptance Tests A == Cori Scratch®

) JE8IE- 31 PB_Lu:stiro'
Lustre Bandwidth HHRHEETE: 248x ClusterStor 9000 OSSes

-y “10.168 HDDs}
Only 4 ppn needed e r‘f’l’ﬂ

-t 4m -s 1638

-t 4m -s 1638

: -w Perform write benchmark only
t : W
Standard args -k Don’t delete written files

-F File-per-process -r Perform read benchmark only

-C Shift ranks < t] o)
-e include fsync(2) time eparate sruns drop client caches

Results:
751,709 MB/s write (max)
678,256 MB/s read (max)

BERKELEY LAB (@ ENERGY | o

Running afoul of “wide” benchmarking

How much -b/-s?

* More is better: overrun cache
effects

 More is worse: increase
likelihood of hiccup

> Walltime - Glenn’s goal: run for 30-60s

What is realistic for you?
* do you want the big number?

* do you want to emulate user
experience?

« small = fast
* big = realistic

MPI| Rank

< I
c

T
e
o
=

> Walltime

BERKELEY LAB (@ ENERGY | o7

Stonewalling to reduce penalty of stragglers

Default behavior

« all ranks write same total bytes
* timer stops when slowest rank finishes

MPI| Rank

\ 4

1| BERKELEY LAB (@ ENERGY

Stonewalling to reduce penalty of stragglers

Default behavior

« all ranks write same total bytes
* timer stops when slowest rank finishes

MPI| Rank
-j-

\ 4

Stonewalling (-D 30)

- stop all writes after 30 sec, add up bytes written

* bandwidth = total bytes written / 30 sec [+ fsync time]
» not what apps do — apps don’t give up if I/O is slow!

» shows best-case system capability despite hiccups —
recommended for system acceptance

BERKELEY LAB (@ ENERGY | o7

|IOR Acceptance Tests

Lustre Bandwidth — Writes with time limit

4 ppn used

Standard args:

-F File-per-process
-C Shift ranks

-e include fsync(2) time

Results: 3,593,657 MB/s write (max)

T Perlmutter'Scratch
“ ‘ 36 PB Lustre
274x(ﬂusﬁn8torE1000()SSOQ

¥ 3.2838 NVMO SSDS

-w Write-only benchmark

Office of
Science

PerIletterESCratCh

|IOR Acceptance Tests | T e

. 274x ClusterStor E1000 OSSes
Lustre Bandwidth — Reads with time limit 23285 NVMSSSDS

$ srun -N 1382 -n 5528 ./ior -F -C -e -g -b 1m -t 1m -s 100000 -D 90 -0 stoneWallingWearOut=1

$ srun -N 1382 -n 5528 ./ior -F -C -e -g -b 1m -t 1m -s 100000 -D 30

1. Write data to files for 90 seconds

o MU IENERRBET-{NEEINOIEN] : every rank writes the same amount of bytes
even if stonewalling (-D 90) cuts the run short

o Generates uniform files - avoid EOF when ranks are shifted and read back
2. Read back files for 30 seconds

Results: 4,003,761 MB/s read (max)

Office of

Science

Measuring |IOPS

with IOR

BERKELEY LAB

®

U.S. DEPARTMENT OF

ENERGY

Office of
Science

Measuring random |/O performance

I/O Operations Per Second
* Move smallest unit of storage

from/to arbitrary location

“smallest” usually 4 KiB
(memory page in Linux)

* 110P =4 KiB 1/Os per sec

from random offsets
- Historically block-level

Samsung PMI1733 specifications

Form factor U2/25"

Capacity 1.927B,3.84 TB, 7.68TB, and 15.36TB
Host interface PCle Gen 3/4 x4

Spec Compliance

NAND flash memory

Power consumption (Active/Idle)

Uncorrectable Bit Error Rate (UBER)
Mean Time Between Failure (MTBF)

Endurance

Sequential read

Random read

Random write

yyyyyy

IOPS

Samsung PMI733
NVMe SSD

NVMe specrev.1.3
PCI Express base specification rev. 4.0

Samsung V-NAND®
20W/8.5W
1sector per10*17 bits read
2,000,000 hours
1DWPD for5 years
Gen 3: 3,500 MB/s, Gen 4: 7,000 MB/s

Gen 3: 800K IOPS, Gen 4: 1.5M I0PS
Gen 3 &4: Up to 135,000 IOPS

U.S. DEPARTMENT OF Office of

ENERGY Science

Switching IOR from “interleaved” to “random”

— transferSize transferSize
transferSize transferSize
transferSize > transferSize
transferSize > transferSize
transferSize transferSize
transferSize transferSize 1
segment 1 4 | s |~ 2 fandomizes order of
transferSize transferSize
‘ 7 =wese—| €ach transfer (-t)
transferSize \‘ = ‘ transferSize .
transferSize \/’/' transferSize o b a n d - S Stl I I Set d ataset
- transferSize \ l/’ transferSize .

transferSize 4 transferSize

block - rank 0 transferSize ‘\\(/ ‘)' A transferSize S Ize
transferSize ‘V/&\ s ', ,'(transferSize . f h
transferSize 'e,’ ?’6\ ‘ transferSize ¢ - t 4 K Sets S |Ze O eaC
transferSize '/"\‘ transferSize .

block - rank 1 { transferSize N ‘\ transferSize read / erte
transferSize > transferSize
transferSize J \ > transferSize
transferSize transferSize

block - rank 2 { transferSize transferSize
transferSize transferSize
transferSize transferSize

i| BERKELEY LAB @ ENERGY | o7

Lessons learned still apply
Plus a new gotcha for IOPS

* File per process (-F) or shared file?
o Do you want your IOPS number to reflect lock contention?
o What are you trying to measure?
* How to cope with client page cache?
o Read — |IOR will never re-read the same transfer from cache with -C
o Write — client caching will reorder/coalesce random writes
* Unique to IOPS - write vs. rewrite
o Re-writing files randomly has much higher overhead
o Consider RAID read-modify-write impacts

Overcoming caches for random writes

+ --posix.odirect IOR Write IOPS tests

. 4 clients, 16 ppn
o forces file 1/0 to bypass page 274x NVMe OSTs

cache entirely
o reduces apparent write IOPS
* Which is “true performance?”
o True random writes are rare
o Random, direct I/O is rarer

« Application performance
should include write-back

- System performance is better 0.42
measured with O_DIRECT F FC FC-e -FC-e

--posix.directio

14.0 13.0

10.9

=
o

IOR Throughput (KIOPS)
=

BERKELEY LAB (@ ENERGY | o7

VAST. Scale System

IOR Hero Test 4 PBVAST
. . . . T TXT Conflg
VAST IOPS — Writes with time limit 308 NVMe 484 Optanc SSD

\N
-
$ srun -N 32 -n 4096 ./ior -g -b 1m -t 4k -s 372736 \ :

-D 45 -1 random

* Using --posix.odirect
o Force random pattern to cross network without reordering
o Oversubscribed clients (128 ppn) to make up for 0 _DIRECT loss

* Other parameters are standard
o for stonewalling
o -w is write-only test (and no -k means don’t bother keeping files after)
o -z for random instead of interleaved

Results: 640,713 IOPS write (max)

Office of

Science

] _ I Perlmutter§S(3ratCh
|IOR Hero Test T S

. . .. 274x ClusterStor E1000 OSSes
Lustre IOPS — Reads with time limit I semE NV;MES\SIDS

$ srun -N 1024 -n 32768 ./ior -F -e -g -b 64g -t 64m -D 90 -0 stoneWallingWearOut=1
$ srun -N 1024 -n 32768 ./ior -F -e -g -b 64g -t 64m -D 45

$ srun -N 1024 -n 32768 ./ior -F -C -e -g -b 1g -t 4k -s 20 -D 45

1. Write data to files for 45 seconds
SO e [N ENRER I EET0 I X to generate uniform file sizes (uppercase O)
o | for big bandwidth - generate big files for random read test
2. Cleanse the palate
write and discard (no.) data to flush out caches (clients + servers) just in case
hspecifies name of files IOR creates (lowercase 0)
don’t want to overwrite dataset generated in Step 1
3. Read back files for 45 seconds

Avoid EOF by sizing nandto match file sizes generated in step 1 from

Results: 117,349,729 IOPS read (max)

O

O

O

O

U.S. DEPARTMENT OF Oﬁw of

ENERGY Science

Measuring metadata performance

mdtest

BERKELEY LAB

U.S. DEPARTMENT OF

) 4

Office of
Science

The mdtest benchmark * tree.o/
o tree.1l/

« MPI application benchmark — included with IOR . tree.3/
- Performs metadata operations on configurable .+ tree.7/
directory hierarchies . file.0
° |nput: « file.1
o # files/dirs to test ’ t'"i‘?l"”z
o how deep/wide tree should be) f;12:3

« Output: metadata ops per second . tree.2/
» Configurable backends * tree.5/
o POSIX, STDIO, MPI-IO ’ fi:lle-4
- same support as IOR - file.s
e tree.6/
https://github.com/hpclior/releases ‘ ilie;’

° lie.

BERKELEY LAB (@ ENERGY | o7

2 tasks, 200000 files/directories

$ mpirun -n 2 ./mdtest -n 100000 €— _

SUMMARY rate: (of 1 iterations)

e - | _
Directory creation 13873. :

Directory stat 23070. . 23070.131

Directory rename . 6807.317 0.@@0
Directory removal . . 9581.667

File creation . .51:

File read . . e Y
File removal . . 14142 .063 0.000
Tree creation . . 2100.302 0.000

Tree removal . . 236.739 0.000

Step 2. Figure out what it's really doing

What mdtest does: What mdtest tells you:
1. Create directory tree —~ * how fast one operation and

2. Test directory performance nothing else can be sustained
DG Temeate T TTTTTTTTTTTS * bulk-synchronous performance
2 st -cll) (think: file-per-process checkpoint)
__S%__frename _ __ ________. C - cost of different metadata
__4__unlnk - operations

3. Test file performance (g
~ 1 createandwrte 0O What mdtest does not tell you:
__2__sat______________ |—|I » compile/untar/python performance
__2__readandclose _______. o - when a file system will tip over

4. unlink > . .

---------------------- * how laggy a file system will feel

BERKELEY LAB (@ ENERGY | o7

$ mpirun -n 2 ./mdtest -n 100000

2 tasks, 200000 files/directories

SUMMARY rate: (of 1 iterations)
Operation Max Min

Directory creation 138723~ 13873.461
Directory stat 2307047 2307
Directory rename 6807.

Directory removal

File creation .

File stat 10907. 10907.440
File read PIYER 12079.89
File removal : 6
Tree creation 2100.302 2100.80
Tree removal 236.739 236.739

neRsc

Option Effect

$ mpirun -n 2 ./mdtest -n 100000

2 tasks, 200000 files/directories 'D Run Only directory tests

SUMMARY rate: (of 1 iterations) -F Run only m tests

Operation Max

Directory creation 13873. _ m
Directory stat 23070. C Run Only phase
Directory rename 6807.

Directory removal 9581. _ m

File creation 8798. T Run Only phase
File stat 10907.

File read 12079. _E Run Only m phase
File removal 14142.

Tree creation 2100.

Tree removal EL -r Run only EEIitalEll phase

,. "‘\'

mdtest Acceptance Tests Ry

31 PB:Lustre

Lustre on HDDs - No DNE 1x ClusterStor 9000 MDS

: ZMHDDS*

32 ppn

Create 20 files/dirs
per MPI rank

Results:

45,945 creates/sec (max) So don’t run:
147,502 stats/sec (max) « directory tests
28,213 unlinks/sec (max) * read phase

BERKELEY LAB (@ ENERGY | o

mdtest Acceptance Tests Ry
Lustre on HDDs - DNE Phase 1 A

5x ClustorSEor 900_0 MDS

: 268HDD5*

./mdtest

@

 -d specifies output directories

o Multiple directories can be separated by
o Makes mdtest evenly stripe data across many dirs
o Can repeat directories if, e.g., one MDT is “better” than others

Results:
112,349 creates/sec (max)
453,902 stats/sec (max)
111,286 unlinks/sec (max)

BERKELEY LAB (@ ENERGY | o

mdtest Acceptance Tests Il e

4x ClusterStor E1000 MDSO%
Lustre on NVMe - DNE Phase 2 48 NVMESSDs

$ 1fs mkdir -c 4 -D

$./mdtest

Create striped metadata directory (/lus/striped)

Use 2,441 files per MPI process

Run only file tests (- F), create (-C) and unlink (-r) phases
Work in our newly created striped dir (-d /lus/striped)

Results:
217,396 creates/sec (max)
187,845 unlinks/sec (max)

Office of

Science

Controlling the directory hierarchy

 Depth factor (-z) controls depth
 Branching factor (-b) controls breadth

* Files are either

o spread evenly throughout every directory (default)
o spread evenly at deepest directories (leaf mode (-L))

* Default
o zero depth (-z 9), zero breadth (-b 1)
o dumps all files into one giant directory

test-dir.0-0/

Changing depth factor

-7 @ test-dir.0-0/
(default)

 Creates skinny trees
 Always the same file

count in each dir -z 1
* Rounds n down if not

evenly divisible by

(depth+1) _7 9

BERKELEY LAB (@ ENERGY | o7

Changing branching factor test-dir.0-0/

- Exponential "z 2

branching

o Files evenly spread,
rounded down

o Need high number of test-dir.e-e/
files (-n) to get lots of mdtest_tree.@/
flleé/d!r mdtest. tree.1/
‘ 5()erra']|;)s|g)((:|1.:f; -7 2 mdtest_tree.3/
L mdtest_tree.4/
* Realistic workload?

mdtest tree:2/
o Parallel file transfers?

o Anything else?

mdtest_tree.5/

mdtest_tree.6/

BERKELEY LAB (@ ENERGY | o7

test-dir.0-0/

Other practical options e (]

-L -z 2 -b 2 dtest “treas, 1/

. C_reate flles at deepest
directories only
* Closer to some real
mdtestitree. 2/
datasets

Create Phase Stat Phase Read Phase Unlink Phase Perform 1/O to files

» -wand -e write/read to each file
write w read e , * -w 4096 -e 4096 to create and
& D Pbytes. o Close L stat open) putes [close [unlink read 4 KiB files

create * Try using with DoM

open

mpirun -n 3 ./mdtest -n 5 -z @ -b 1 -u
Directory-per-MPI rank (-u)
+ Each MPI proc makes own

test-dir.0-0/

directory for its files within tree mdtest tree.0.0/ g GEIEHEH0
* Reduces directory locking mdtest_tree.1.0/ g file.1.0

* Like file-per-proc in IOR
mdtest tree.2.0/ g file.2.0

BERKELEY LAB @ ENERGY | I

PerIletterESCratCh

mdtest Acceptance Tests ‘ e e
Lustre on NVMe - Purge performance 4x ClusterStor E1000 MDSes

48 NVMc.SSDs

_/mdtest u -d /lus/mdte@/lus/mdtl \

./mdtest u -d /lus/mdte@/lus/mdtl \

Create 1 MiB files to unlink -

Results: : : :
6,828 creates/sec (max) because purging _er_npty files is
70,546 unlinks/sec (max) not realistic

BERKELEY LAB @ ENERGY | o

Wrapping Up

BERKELEY LAB

®

U.S. DEPARTMENT OF

ENERGY

Office of
Science

Be methodical in your approach to benchmarking

Why are you How will you What did you What is the
benchmarking? benchmark? just uncertainty?
measure?
* To understand system * IOR, elbencho, ...? « Client DRAM? « Standard deviation?
 Bandwidth * mdtest, md-workbench, ...? * Network? * Multimodality?
* IOPS + 105007 + OSS DRAM? + Distribution shape?
+ Metadata « OSS HDD/SSD?

* To understand apps
+ Parallel checkpoint
+ Ensembles

Office of

i BERKELEY LAB (@ ENERGY | 372

Other benchmarks worth considering

- elbencho
o does similar to IOR+mdtest for non-MPI environments
o reports performance in realtime while benchmark is running
o https://qgithub.com/breuner/elbencho
* md-workbench
o workload analogous to compilation
o messy, incoherent, small-file create/write/stat/read/unlink
o https://qgithub.com/hpc/ior

- 10500

o IOR, mdtest, parallel find with canned workload patterns
o https://github.com/I0500/io500

BERKELEY LAB (@ ENERGY | o7

https://github.com/breuner/elbencho
https://github.com/hpc/ior
https://github.com/IO500/io500

Supplemental resources

« Getting started with...

o IOR: https://glennklockwood.blogspot.com/2016/07/basics-of-io-
benchmarking.html

o mdtest; https://www.glennklockwood.com/benchmarks/mdtest.html
o elbencho: https://www.glennklockwood.com/benchmarks/elbencho.html

o md-workbench: https://www.glennklockwood.com/benchmarks/md-
workbench.html

- Example acceptance test and hero run parameters:
https://www.glennklockwood.com/benchmarks/ior-results.html

BERKELEY LAB (@ ENERGY | o7

https://glennklockwood.blogspot.com/2016/07/basics-of-io-benchmarking.html
https://www.glennklockwood.com/benchmarks/mdtest.html
https://www.glennklockwood.com/benchmarks/elbencho.html
https://www.glennklockwood.com/benchmarks/md-workbench.html
https://www.glennklockwood.com/benchmarks/ior-results.html

Thank you!

Special thanks to
Doug Petesch, John Fragalla, and Bill Loewe
(all of HPE/Cray) for many of the examples and insights presented.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under contract DE-AC02-05CH11231. This
research used resources and data generated from resources of the National Energy Research Scientific Computing Center, a DOE Office of
Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

-1 BERKELEY LAB @ ENERGY | J1eed

