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Presentation Outline

MGC Obdclass
• Introduction to MGC
• MGC module initialization
• MGC obd operations
• mgc_setup()

• Operation
• Lustre log handling

• Log processing in MGC
• mgc_precleanup() and 
mgc_cleanup()

• mgc_import_event()

• Introduction to Obdclass
• obd_device structure
• MGC life cycle
• Obd device life cycle

• class_attach()
• obd_export structure
• class_setup()
• class_precleanup() and 

class_cleanup()
• Imports and exports
• Useful APIs in Obdclass
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Introduction to MGC

• Lustre client software has 3 components:
– MGC (Management Client)
– MDC (Metadata Client)
– OSC (Object Storage Client)

• MGC acts as interface between virtual file system layer and Management 
Server (MGS)

• MGS provides configuration information to all components

• Lustre targets register with MGS to provide information to MGS

• Lustre clients contact MGS to retrieve information from it
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Introduction to MGC

• Major functionalities of MGC:
– Lustre log handling
– Distributed lock management
– File system setup

• MGC is the first obd device created in Lustre obd device lifecycle

• Obd device in Lustre provides a level of abstraction on Lustre 
components
– Generic operations can be applied without knowing the specific device details
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MGC Module Initialization
• When MGC kernel module initializes, it registers as an obd device with 

Lustre using class_register_type()

• Obd device data and metadata operations are defined using obd_ops
and md_ops structures

• Since MGC deals with metadata, only obd_ops is defined

• class_register_type() passes &mgc_obd_ops, and LUSTRE_MGC_NAME 
as its arguments

• LUSTRE_MGC_NAME is defined as “mgc” in include/obd.h



66 Open slide master to edit

MGC Obd Operations

• Defined by mgc_obd_ops structure

• All operations are defined as function 
pointers

• Provides level of abstraction on Lustre 
components

• Main operations described here are,
– mgc_setup()

– mgc_precleanup()

– mgc_cleanup()

– mgc_import_event()

– mgc_process_config()
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MGC Obd Operations (cont.)
• obd_ops structure can be used to share 

information between two subsystems

• Shows the example of mgc_get_info()
from mgc_obd_ops

• Llite makes a call to mgc_get_info()

• Llite invokes obd_get_info() instead of 
mgc_get_info()

• obd_get_info() invokes OBP macro by 
passing obd_export structure with 
get_info operation

• OBP concatenates "o" with operation 
which results in o_get_info()

Figure 1. Communication between llite and mgc through obdclass[1]
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MGC Obd Operations (cont.)
• How does llite make sure to get the correct export for mgc ?

• obd_get_info() has an argument called sbi->ll_md_exp

• sbi is a type of ll_sb_info defined in llite_internal.h

• ll_md_exp field from ll_sb_info is a type of obd_export structure

• obd_export has a field *exp_obd which is an obd_device structure

• obd_connect() retrieves export using the obd_device structure

Figure 2. Data structures involved in the communication between mgc and 
llite subsystems [1]
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mgc_setup()
• The initial routine that gets 

executed to start and setup the 
MGC obd device

• Lustre module initialization begins 
from lustre_init()

• register_filesystem() registers 
Lustre among the list of file systems

• lustre_fill_super() is the entry 
point for mount call from client

• lustre_start_mgc() sets up MGC 
obd device to start process logs

• lustre_start_simple() invokes 
obdclass specific routines through 
do_lcfg()

Figure 3. mgc_setup() call graph starting from Lustre file system mounting [1]
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mgc_setup()(cont.)
• do_lcfg() takes obd device name 

and lcfg_command

• do_lcfg() takes LCFG_SETUP and 
invokes class_process_config()

• class_setup() creates hashes and 
self-export

• obd_setup() calls mgc_setup()
through OBP macro

• mgc_setup() does the following,
– Adds reference to PTL-RPC layer
– Sets up RPC client 

using client_obd_setup()

– mgc_llog_init() initializes Lustre logs
– mgc_tunables_init() initializes the 

tunables
– kthread_run starts mgc_requeue_thread

Figure 3. mgc_setup() call graph starting from Lustre file system mounting [1]
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Lustre Log Handling

• Lustre makes use of logging for recovery and distributed transaction commits

• Logs associated with Lustre are called ‘llogs’

• Config logs, startup logs and change logs correspond to various llogs

• llog_reader can be used to read llogs

• MGS constructs a log for the target when Lustre target registers with MGS

• Lustre client log is created for client when its mounted

• When user mounts the the Lustre client, logs are downloaded on the client

• MGC reads and processes the logs and sends them to clients and servers
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Log Processing in MGC
• lustre_fill_super() makes a call to 

ll_fill_super()

• Initializes a config log instance specific to super 
block

• lustre_process_log() gets a config log from 
MGS and starts processing it

• Continues to process new statements 
appended to logs

• Resets lustre_cfg_bufs and calls obd_process_config()

• Invokes mgc_process_config() using OBP macro

• The lcfg_command passed is LCFG_LOG_START

• config_log_add() adds the log to the list of active logs watched for updates by MGC

Figure 4. mgc_process_config() call graph [1]
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mgc_precleanup() and mgc_cleanup()
• class_cleanup() starts the shutdown of an 

obd device

• mgc_precleanup() makes sure that all 
exports are destroyed

• Decrements mgc_count which keeps count 
of number of threads

• obd_cleanup_client_import() destroys 
client-side import interface

• mgc_cleanup() invokes mgc_llog_fini()
which cleans up Lustre logs with the MGC

• Log cleaning is accomplished by 
llog_cleanup()

Figure 4. mgc_setup() vs. mgc_cleanup() [1]
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mgc_precleanup() and mgc_cleanup() (cont.)

• mgc_cleanup() deletes profiles for the last MGC 
obd device using class_del_profiles()

• Lustre profiles help to identify intended recipients 
of the data

• lprocsfs_obd_cleanup() removes sysfs and 
debugfs entries

• Decrements reference to PTL-RPC layer and calls 
client_obd_cleanup()

• Makes the obd namespace points to NULL and 
destroys client-side import interface

• Frees up the obd device using OBD_FREE macro

• After the obd_precleanup(), uuid-
export and nid-export hashtables are freed up 
and destroyed

Figure 4. mgc_setup() vs. mgc_cleanup() [1]
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mgc_import_event()

• mgc_import_event() handles events 
reported at the MGC import interface

• Type of import events identified by MGC 
are listed in obd_import_event

• Client-side imports are used by clients to 
communicate with exports on the server

• For e.g., in communication from MDS to 
MGS, MDS will be using client import to 
communicate with MGS server-side 
export
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Introduction to Obdclass
• Obdclass allows to apply generic operations without knowing the specific details of obd

devices

• MGC, MDC, OSC, LOV and LMV are examples of obd devices in Lustre that makes use of 
obdclass

• Obd devices can be connected in different ways to form client-server pairs for data 
exchange in Lustre

• Obd devices in Lustre are stored in obd_devs array and is limited by MAX_OBD_DEVICES

• obd_devs array is indexed using obd_minor number

• An obd device can be identified using its minor number, name or uuid
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obd_device structure
• obd_type defines the type of the obd device 

– metadata, bulk or both

• obd_magic used to identify data corruption 
with an obd device

• obd_minor is the index of obd_devs array

• lu_device indicates obd device is a real 
device such as ldiskfs or zfs

• Includes various flags to indicate the current 
status of obd device

– obd_attached, obd_set_up, obd_stopping, 
obd_starting and so on

• uuid-export and nid-export hash tables 
for obd device

• Linked lists pointing to obd_nid_stats, 
obd_exports and obd_unlinked_exports
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MGC Life Cycle

• MGC is the first obd device setup and started by Lustre in the life cycle

• Generic file system mount function vfs_mount() is invoked by mount system call from 
user
– Handles the generic portion of mounting the file system

• Invokes specific mount function, lustre_mount()

• lustre_mount() invokes kernel function mount_nodev() which invokes 
lustre_fill_super() as its callback function
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MGC Life Cycle

• lustre_fill_super() is the entry point for mount 
call into Lustre

• Initializes Lustre superblock, which is used by MGC to 
write a local copy of the config log

• ll_fill_super() initializes a config log instance 
specific for the superblock

• cfg_instance field is unique to the superblock, 
obtained using ll_get_cfg_instance()

• Also has a uuid and a callback handler defined by the function 
class_config_llog_handler()

• File system name field of ll_sb_info is populated by using 
get_profile_name()

• get_profile_name() obtains a profile name corresponding to the mount 
command issued from the user from the lustre_mount_data structure
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MGC Life Cycle
• ll_fill_super()invokes 

lustre_process_log() which gets config 
logs from MGS

• Will continue to process new statements 
appended to the logs

• Three parameters passed to this function 
are superblock, log name and config log 
instance

– config log instance is used by MGC to write 
local copy of the config log

– logname is name of llog replicated from 
MGS

• obd_process_config() uses OBP macro to 
call MGC specific mgc_process_config()

• Logs are added to the list of logs to watch

Figure 5. Obd device life cycle workflow for MGC [1]



2121 Open slide master to edit

MGC Life Cycle
• mgc_process_config() invokes the 

following subfunctions

• config_log_add() categorizes the data in 
config log based on:

– ptl-rpc layer, configuration parameters, 
nodemaps and barriers

• Log data related to each of these is copied 
to memory using 
config_log_find_or_add()

• mgc_process_log() gets config log from 
MGS

• mgc_process_cfg_log() reads the log and 
creates a local copy

• Initializes an environment and context using 
lu_env_init() and llog_get_context()

• mgc_llog_local_copy() is used to create a 
local copy of the log

Figure 5. Obd device life cycle workflow for MGC [1]
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MGC Life Cycle
• Real time changes are parsed using the 

function class_config_parse_llog()

• First log that is being parsed is start_log

• class_config_parse_llog() acquires lock 
on the log using llog_init_handle()

• Uses an index and a callback function 
(class_config_llog_handler()) to process 
logs

• Callback handler also initializes 
lustre_cfg_bufs to temporarily store log 
data

• The following actions take place afterwards,
– translates log names to obd device 

names
– appends uuid with obd device name for 

each Lustre client mount
– attaches the obd device

Figure 5. Obd device life cycle workflow for MGC [1]
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MGC Life Cycle

• Each obd device then sets up a key to communicate with other devices through secure 
ptl-rpc layer

• Rules for creating this key are stored in the config log

• Obd device then creates a connection for communication

• Start log contains all state information for all configuration devices

• The lustre configuration buffer (lustre_cfg_bufs) stores this information temporarily

• Obd device then use this buffer to consume log data

• After creating a connection, the handler extracts information (uuid, nid etc.) required to 
form Lustre config_logs
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MGC Life Cycle

• llog_rec_hdr decides what type of information should be parsed from the logs

• For instance,
– OBD_CFG_REC indicates the handler to scan obd device configuration information
– CHANGELOG_REC asks to parse for changelog records

• Using nid and uuid information about the obd device the handler now 
invokes class_process_config() routine

• This function repeats the cycle of obd device creation for other obd devices

• Notice that the only obd device exists in Lustre at this point in the life cycle is MGC

• class_process_config() function calls the generic obd class functions such 
as class_attach(), and class_setup() depending upon the lcfg_command it 
receives for a specific obd device
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Obd Device Life Cycle – class_attach()
• First method in the lifecycle of an obd

device – class_attach()

• Registers and adds the obd device to the 
list of obd devices

• The attach function checks if obd type 
being passed is valid

• obd_ops and md_ops determine obd
device performs what type of operation

• lu_device_type is applicable only for real 
block devices

• Differentiates metadata and bulk data 
devices using LU_DEVICE_MD and 
LU_DEVICE_DT
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Obd Device Life Cycle – class_attach()

• class_newdev() creates and 
allocates a new obd device

• class_get_type() registers and 
loads the device

• class_new_export_self()
creates a new export and adds it 
to the hashtable of exports

• Self-export is created only for client obd device

• Last part of class_attach() is registering/listing obd device

• class_register_device() lists the device in obd_devs array

• Assigns a minor number to the obd device

Figure 6. Workflow of class_attach() function in 
obd device lifecycle [1]
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obd_export Structure
• obd_export represents a target side export 

connection for an obd device

• For every connected client, there will be an export 
structure on the server attached to the same obd
device

• exp_handle is used identify which export the 
clients are talking to

• exp_rpc_count is the number of RPC references

• exp_cb_count counts commit callback references

• exp_locks_list maintains a linked list of all the 
locks

• exp_client_uuid is the UUID of client connected 
to this export

• exp_obd_chain links all the exports on an obd
device
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Obd Device Life Cycle – class_setup()
• class_setup() creates hashtables

and self-export

• Obtains obd device from obd_devs
array using obd_minor

• Sets obd_starting flag to indicate 
that set up of this device has started

• Device specific obd_setup() is invoked by 
class_setup()

• Invokes device specific routines such as mgc_setup()
and lwp_setup()

• client_obd_setup() populates client_obd structure

Figure 7. Workflow of class_setup() function in 
obd device lifecycle [1]
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Obd Device Life Cycle – class_setup()
• client_obd structure is used for page 

cache and extended attributes 
management

• It comprises of fields pointing to,
– uuid and import interfaces
– counter to keep track of client 

connections
– maximum and default extended 

attribute sizes
– cl_cache: LRU cache for caching OSC 

pages
– cl_lru_left: available LRU slots per 

OSC cache
– cl_lru_busy: number of busy LRU 

pages
– cl_lru_in_list: number of LRU pages 

in the cache for client_obd
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Obd Device Life Cycle – class_setup()
• client_obd_setup() obtains LDLM 

lock to setup LDLM layer references

• Sets up ptl-rpc request and reply 
portals using ptlrpc_init_client()

• client_obd defines a pointer to the 
obd_import structure

• obd_import represents client-side view of the remote 
target

• New import connection for the obd device is created 
using class_new_import()

• Adds an initial connection to ptl-rpc layer using 
client_import_add_connection()

• client_obd_setup() creates ldlm namespace using 
ldlm_namespace_new()

Figure 7. Workflow of class_setup() function in 
obd device lifecycle [1]
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Obd Device Life Cycle – class_precleanup() and class_cleanup()

• Lustre unmount process begins from 
ll_umount_begin() defined as part 
of ll_super_operations

• ll_umount_begin() accepts a 
super_block

• Metadata and data exports are 
extracted using class_exp2obd()

• obd_force flag from obd_device
structure is set to indicate the 
cleanup process

• Periodically checks and waits to 
finish until there are no outstanding 
requests from vfs layer

Figure 8. Lustre unmounting and initiation of 
class_cleanup() in obd device lifecycle [1]
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Obd Device Life Cycle – class_precleanup() and class_cleanup()

• ll_put_super() obtains cfg_instance
and profile name for super block using 
ll_get_cfg_instance() and 
get_profile_name()

• lustre_end_log() ensures to stop 
following updates for the config log

• obd_process_config() invokes device 
specific mgc_process_config()

• config_log_end() finds the config log 
and stop watching updates

• ll_put_super() invokes class_devices_in_group() which 
iterates through devices and sets obd_force flag

• Afterwards it calls class_manual_cleanup() routine which 
invokes obdclass functions class_cleanup()
and class_detach()

Figure 8. Lustre unmounting and initiation of 
class_cleanup() in obd device lifecycle [1]
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Obd Device Life Cycle – class_precleanup() and class_cleanup()

• class_cleanup() starts the shutdown of the 
obd device

• Sets obd_stopping flag to indicate cleanup 
has started

• Disconnects exports using 
class_disconnect_exports()

• Invokes generic function obd_precleanup()
to ensure all exports are destroyed

• class_cleanup() destroys uuid-export, 
nid-export, and nid-stats hashtables

• class_detach() makes the obd_attached flag to zero

• class_unregister_device() unregisters the device

• class_decref() destroys last export by calling 
class_unlink_export()

Figure 9. class_cleanup() workflow in obd device 
lifecycle [1]
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Obd Device Life Cycle – class_precleanup() and class_cleanup()

• class_export_put() frees the obd device 
using class_free_dev()

• class_free_dev() call device specific 
cleanup through obd_cleanup()

• class_put_type() unloads the module

Figure 9. class_cleanup() workflow in obd device 
lifecycle [1]
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Imports and Exports

• Lustre components like mdt and ost need 
one client obd device to establish 
communication between them

• Also applicable in case of Lustre client 
communicating with Lustre servers

• Client side obd device consists of exports 
and reverse imports

• Client device sends request to server using its import and server receives it using its 
export

• Imports on server devices are called reverse imports because they send requests to 
client obd devices

• Client uses its self-export to receive these call backs requests from the server

Figure 10. Import and export pair in Lustre [1]
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Imports and Exports

• For any two obd devices to communicate with 
each other they need an import export pair

• lctl dl and /sys/fs/lustre directory show the 
obd devices

• Example of name of an obd device for 
communication between OST5 and MDT2 will be 
MDT2-lwp-OST5

• Client obd device that enables the communication is lwp

• lwp manages connections established from ost to mdt, and mdts to mdt0

• lwp is also used to send quota and FLD query requests

• Figure shows the communication between mdt and ost through osp client obd device

Figure 11. Communication between ost and mdt
server obd devices in Lustre [1]
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Imports and Exports
• obdfilter directory from /proc/fs/lustre lists osts present on the OSS node

• All osts have export connections listed in the nid format in their respective exports'
directory

• Export connection information is stored in a file called export in each of the export 
connections directory

• Viewing the export file corresponding to MDT2 shows the following fields
– name: Shows the name of the ost device
– client: The nid of the client export connection
– connect_flags: Flags representing various configurations for the lnet and ptl-rpc connections between 

the obd devices.
– connect_data: Includes fields such as flags, instance, target_version, mdt_index and 

target_index

– export_flags: Configuration flags for export connection
– grant: Represents target specific export data
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Useful APIs in Obdclass
• All obdclass related functions are declared in include/obd_class.h and definitions are found in 

obdclass/genops.c

• class_newdev() - Creates a new obd device, allocates and initializes it.

• class_free_dev() - Frees an obd device.

• class_unregister_device() - Unregisters an obd device by feeing its slot in obd_devs array.

• class_register_device() - Registers obd device by finding a free slot in in obd_devs array and 
filling it with the new obd device.

• class_name2dev() - Returns minor number corresponding to an obd device name.

• class_name2obd() - Returns pointer to an obd_device structure corresponding to the device 
name.

• class_uuid2dev() - Returns minor number of an obd device when uuid is provided.

• class_uuid2obd() - Returns obd_device structure pointer corresponding to a uuid.

• class_num2obd() - Returns obd_device structure corresponding to a minor number.
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