
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Lustre MGC and Obdclass Deep Dive

Anjus George
HPC Systems Software Engineer
Oak Ridge National Laboratory

May 9th , 2022



22 Open slide master to edit

Presentation Outline

MGC Obdclass
• Introduction to MGC
• MGC module initialization
• MGC obd operations
• mgc_setup()

• Operation
• Lustre log handling

• Log processing in MGC
• mgc_precleanup() and 
mgc_cleanup()

• mgc_import_event()

• Introduction to Obdclass
• obd_device structure
• MGC life cycle
• Obd device life cycle

• class_attach()
• obd_export structure
• class_setup()
• class_precleanup() and 

class_cleanup()
• Imports and exports
• Useful APIs in Obdclass



33 Open slide master to edit

Introduction to MGC

• Lustre client software has 3 components:
– MGC (Management Client)
– MDC (Metadata Client)
– OSC (Object Storage Client)

• MGC acts as interface between virtual file system layer and Management 
Server (MGS)

• MGS provides configuration information to all components

• Lustre targets register with MGS to provide information to MGS

• Lustre clients contact MGS to retrieve information from it



44 Open slide master to edit

Introduction to MGC

• Major functionalities of MGC:
– Lustre log handling
– Distributed lock management
– File system setup

• MGC is the first obd device created in Lustre obd device lifecycle

• Obd device in Lustre provides a level of abstraction on Lustre 
components
– Generic operations can be applied without knowing the specific device details



55 Open slide master to edit

MGC Module Initialization
• When MGC kernel module initializes, it registers as an obd device with 

Lustre using class_register_type()

• Obd device data and metadata operations are defined using obd_ops
and md_ops structures

• Since MGC deals with metadata, only obd_ops is defined

• class_register_type() passes &mgc_obd_ops, and LUSTRE_MGC_NAME 
as its arguments

• LUSTRE_MGC_NAME is defined as “mgc” in include/obd.h



66 Open slide master to edit

MGC Obd Operations

• Defined by mgc_obd_ops structure

• All operations are defined as function 
pointers

• Provides level of abstraction on Lustre 
components

• Main operations described here are,
– mgc_setup()

– mgc_precleanup()

– mgc_cleanup()

– mgc_import_event()

– mgc_process_config()



77 Open slide master to edit

MGC Obd Operations (cont.)
• obd_ops structure can be used to share 

information between two subsystems

• Shows the example of mgc_get_info()
from mgc_obd_ops

• Llite makes a call to mgc_get_info()

• Llite invokes obd_get_info() instead of 
mgc_get_info()

• obd_get_info() invokes OBP macro by 
passing obd_export structure with 
get_info operation

• OBP concatenates "o" with operation 
which results in o_get_info()

Figure 1. Communication between llite and mgc through obdclass[1]



88 Open slide master to edit

MGC Obd Operations (cont.)
• How does llite make sure to get the correct export for mgc ?

• obd_get_info() has an argument called sbi->ll_md_exp

• sbi is a type of ll_sb_info defined in llite_internal.h

• ll_md_exp field from ll_sb_info is a type of obd_export structure

• obd_export has a field *exp_obd which is an obd_device structure

• obd_connect() retrieves export using the obd_device structure

Figure 2. Data structures involved in the communication between mgc and 
llite subsystems [1]



99 Open slide master to edit

mgc_setup()
• The initial routine that gets 

executed to start and setup the 
MGC obd device

• Lustre module initialization begins 
from lustre_init()

• register_filesystem() registers 
Lustre among the list of file systems

• lustre_fill_super() is the entry 
point for mount call from client

• lustre_start_mgc() sets up MGC 
obd device to start process logs

• lustre_start_simple() invokes 
obdclass specific routines through 
do_lcfg()

Figure 3. mgc_setup() call graph starting from Lustre file system mounting [1]



1010 Open slide master to edit

mgc_setup()(cont.)
• do_lcfg() takes obd device name 

and lcfg_command

• do_lcfg() takes LCFG_SETUP and 
invokes class_process_config()

• class_setup() creates hashes and 
self-export

• obd_setup() calls mgc_setup()
through OBP macro

• mgc_setup() does the following,
– Adds reference to PTL-RPC layer
– Sets up RPC client 

using client_obd_setup()

– mgc_llog_init() initializes Lustre logs
– mgc_tunables_init() initializes the 

tunables
– kthread_run starts mgc_requeue_thread

Figure 3. mgc_setup() call graph starting from Lustre file system mounting [1]



1111 Open slide master to edit

Lustre Log Handling

• Lustre makes use of logging for recovery and distributed transaction commits

• Logs associated with Lustre are called ‘llogs’

• Config logs, startup logs and change logs correspond to various llogs

• llog_reader can be used to read llogs

• MGS constructs a log for the target when Lustre target registers with MGS

• Lustre client log is created for client when its mounted

• When user mounts the the Lustre client, logs are downloaded on the client

• MGC reads and processes the logs and sends them to clients and servers



1212 Open slide master to edit

Log Processing in MGC
• lustre_fill_super() makes a call to 

ll_fill_super()

• Initializes a config log instance specific to super 
block

• lustre_process_log() gets a config log from 
MGS and starts processing it

• Continues to process new statements 
appended to logs

• Resets lustre_cfg_bufs and calls obd_process_config()

• Invokes mgc_process_config() using OBP macro

• The lcfg_command passed is LCFG_LOG_START

• config_log_add() adds the log to the list of active logs watched for updates by MGC

Figure 4. mgc_process_config() call graph [1]



1313 Open slide master to edit

mgc_precleanup() and mgc_cleanup()
• class_cleanup() starts the shutdown of an 

obd device

• mgc_precleanup() makes sure that all 
exports are destroyed

• Decrements mgc_count which keeps count 
of number of threads

• obd_cleanup_client_import() destroys 
client-side import interface

• mgc_cleanup() invokes mgc_llog_fini()
which cleans up Lustre logs with the MGC

• Log cleaning is accomplished by 
llog_cleanup()

Figure 4. mgc_setup() vs. mgc_cleanup() [1]



1414 Open slide master to edit

mgc_precleanup() and mgc_cleanup() (cont.)

• mgc_cleanup() deletes profiles for the last MGC 
obd device using class_del_profiles()

• Lustre profiles help to identify intended recipients 
of the data

• lprocsfs_obd_cleanup() removes sysfs and 
debugfs entries

• Decrements reference to PTL-RPC layer and calls 
client_obd_cleanup()

• Makes the obd namespace points to NULL and 
destroys client-side import interface

• Frees up the obd device using OBD_FREE macro

• After the obd_precleanup(), uuid-
export and nid-export hashtables are freed up 
and destroyed

Figure 4. mgc_setup() vs. mgc_cleanup() [1]



1515 Open slide master to edit

mgc_import_event()

• mgc_import_event() handles events 
reported at the MGC import interface

• Type of import events identified by MGC 
are listed in obd_import_event

• Client-side imports are used by clients to 
communicate with exports on the server

• For e.g., in communication from MDS to 
MGS, MDS will be using client import to 
communicate with MGS server-side 
export



1616 Open slide master to edit

Introduction to Obdclass
• Obdclass allows to apply generic operations without knowing the specific details of obd

devices

• MGC, MDC, OSC, LOV and LMV are examples of obd devices in Lustre that makes use of 
obdclass

• Obd devices can be connected in different ways to form client-server pairs for data 
exchange in Lustre

• Obd devices in Lustre are stored in obd_devs array and is limited by MAX_OBD_DEVICES

• obd_devs array is indexed using obd_minor number

• An obd device can be identified using its minor number, name or uuid



1717 Open slide master to edit

obd_device structure
• obd_type defines the type of the obd device 

– metadata, bulk or both

• obd_magic used to identify data corruption 
with an obd device

• obd_minor is the index of obd_devs array

• lu_device indicates obd device is a real 
device such as ldiskfs or zfs

• Includes various flags to indicate the current 
status of obd device

– obd_attached, obd_set_up, obd_stopping, 
obd_starting and so on

• uuid-export and nid-export hash tables 
for obd device

• Linked lists pointing to obd_nid_stats, 
obd_exports and obd_unlinked_exports



1818 Open slide master to edit

MGC Life Cycle

• MGC is the first obd device setup and started by Lustre in the life cycle

• Generic file system mount function vfs_mount() is invoked by mount system call from 
user
– Handles the generic portion of mounting the file system

• Invokes specific mount function, lustre_mount()

• lustre_mount() invokes kernel function mount_nodev() which invokes 
lustre_fill_super() as its callback function



1919 Open slide master to edit

MGC Life Cycle

• lustre_fill_super() is the entry point for mount 
call into Lustre

• Initializes Lustre superblock, which is used by MGC to 
write a local copy of the config log

• ll_fill_super() initializes a config log instance 
specific for the superblock

• cfg_instance field is unique to the superblock, 
obtained using ll_get_cfg_instance()

• Also has a uuid and a callback handler defined by the function 
class_config_llog_handler()

• File system name field of ll_sb_info is populated by using 
get_profile_name()

• get_profile_name() obtains a profile name corresponding to the mount 
command issued from the user from the lustre_mount_data structure



2020 Open slide master to edit

MGC Life Cycle
• ll_fill_super()invokes 

lustre_process_log() which gets config 
logs from MGS

• Will continue to process new statements 
appended to the logs

• Three parameters passed to this function 
are superblock, log name and config log 
instance

– config log instance is used by MGC to write 
local copy of the config log

– logname is name of llog replicated from 
MGS

• obd_process_config() uses OBP macro to 
call MGC specific mgc_process_config()

• Logs are added to the list of logs to watch

Figure 5. Obd device life cycle workflow for MGC [1]



2121 Open slide master to edit

MGC Life Cycle
• mgc_process_config() invokes the 

following subfunctions

• config_log_add() categorizes the data in 
config log based on:

– ptl-rpc layer, configuration parameters, 
nodemaps and barriers

• Log data related to each of these is copied 
to memory using 
config_log_find_or_add()

• mgc_process_log() gets config log from 
MGS

• mgc_process_cfg_log() reads the log and 
creates a local copy

• Initializes an environment and context using 
lu_env_init() and llog_get_context()

• mgc_llog_local_copy() is used to create a 
local copy of the log

Figure 5. Obd device life cycle workflow for MGC [1]



2222 Open slide master to edit

MGC Life Cycle
• Real time changes are parsed using the 

function class_config_parse_llog()

• First log that is being parsed is start_log

• class_config_parse_llog() acquires lock 
on the log using llog_init_handle()

• Uses an index and a callback function 
(class_config_llog_handler()) to process 
logs

• Callback handler also initializes 
lustre_cfg_bufs to temporarily store log 
data

• The following actions take place afterwards,
– translates log names to obd device 

names
– appends uuid with obd device name for 

each Lustre client mount
– attaches the obd device

Figure 5. Obd device life cycle workflow for MGC [1]



2323 Open slide master to edit

MGC Life Cycle

• Each obd device then sets up a key to communicate with other devices through secure 
ptl-rpc layer

• Rules for creating this key are stored in the config log

• Obd device then creates a connection for communication

• Start log contains all state information for all configuration devices

• The lustre configuration buffer (lustre_cfg_bufs) stores this information temporarily

• Obd device then use this buffer to consume log data

• After creating a connection, the handler extracts information (uuid, nid etc.) required to 
form Lustre config_logs



2424 Open slide master to edit

MGC Life Cycle

• llog_rec_hdr decides what type of information should be parsed from the logs

• For instance,
– OBD_CFG_REC indicates the handler to scan obd device configuration information
– CHANGELOG_REC asks to parse for changelog records

• Using nid and uuid information about the obd device the handler now 
invokes class_process_config() routine

• This function repeats the cycle of obd device creation for other obd devices

• Notice that the only obd device exists in Lustre at this point in the life cycle is MGC

• class_process_config() function calls the generic obd class functions such 
as class_attach(), and class_setup() depending upon the lcfg_command it 
receives for a specific obd device



2525 Open slide master to edit

Obd Device Life Cycle – class_attach()
• First method in the lifecycle of an obd

device – class_attach()

• Registers and adds the obd device to the 
list of obd devices

• The attach function checks if obd type 
being passed is valid

• obd_ops and md_ops determine obd
device performs what type of operation

• lu_device_type is applicable only for real 
block devices

• Differentiates metadata and bulk data 
devices using LU_DEVICE_MD and 
LU_DEVICE_DT



2626 Open slide master to edit

Obd Device Life Cycle – class_attach()

• class_newdev() creates and 
allocates a new obd device

• class_get_type() registers and 
loads the device

• class_new_export_self()
creates a new export and adds it 
to the hashtable of exports

• Self-export is created only for client obd device

• Last part of class_attach() is registering/listing obd device

• class_register_device() lists the device in obd_devs array

• Assigns a minor number to the obd device

Figure 6. Workflow of class_attach() function in 
obd device lifecycle [1]



2727 Open slide master to edit

obd_export Structure
• obd_export represents a target side export 

connection for an obd device

• For every connected client, there will be an export 
structure on the server attached to the same obd
device

• exp_handle is used identify which export the 
clients are talking to

• exp_rpc_count is the number of RPC references

• exp_cb_count counts commit callback references

• exp_locks_list maintains a linked list of all the 
locks

• exp_client_uuid is the UUID of client connected 
to this export

• exp_obd_chain links all the exports on an obd
device



2828 Open slide master to edit

Obd Device Life Cycle – class_setup()
• class_setup() creates hashtables

and self-export

• Obtains obd device from obd_devs
array using obd_minor

• Sets obd_starting flag to indicate 
that set up of this device has started

• Device specific obd_setup() is invoked by 
class_setup()

• Invokes device specific routines such as mgc_setup()
and lwp_setup()

• client_obd_setup() populates client_obd structure

Figure 7. Workflow of class_setup() function in 
obd device lifecycle [1]



2929 Open slide master to edit

Obd Device Life Cycle – class_setup()
• client_obd structure is used for page 

cache and extended attributes 
management

• It comprises of fields pointing to,
– uuid and import interfaces
– counter to keep track of client 

connections
– maximum and default extended 

attribute sizes
– cl_cache: LRU cache for caching OSC 

pages
– cl_lru_left: available LRU slots per 

OSC cache
– cl_lru_busy: number of busy LRU 

pages
– cl_lru_in_list: number of LRU pages 

in the cache for client_obd



3030 Open slide master to edit

Obd Device Life Cycle – class_setup()
• client_obd_setup() obtains LDLM 

lock to setup LDLM layer references

• Sets up ptl-rpc request and reply 
portals using ptlrpc_init_client()

• client_obd defines a pointer to the 
obd_import structure

• obd_import represents client-side view of the remote 
target

• New import connection for the obd device is created 
using class_new_import()

• Adds an initial connection to ptl-rpc layer using 
client_import_add_connection()

• client_obd_setup() creates ldlm namespace using 
ldlm_namespace_new()

Figure 7. Workflow of class_setup() function in 
obd device lifecycle [1]



3131 Open slide master to edit

Obd Device Life Cycle – class_precleanup() and class_cleanup()

• Lustre unmount process begins from 
ll_umount_begin() defined as part 
of ll_super_operations

• ll_umount_begin() accepts a 
super_block

• Metadata and data exports are 
extracted using class_exp2obd()

• obd_force flag from obd_device
structure is set to indicate the 
cleanup process

• Periodically checks and waits to 
finish until there are no outstanding 
requests from vfs layer

Figure 8. Lustre unmounting and initiation of 
class_cleanup() in obd device lifecycle [1]



3232 Open slide master to edit

Obd Device Life Cycle – class_precleanup() and class_cleanup()

• ll_put_super() obtains cfg_instance
and profile name for super block using 
ll_get_cfg_instance() and 
get_profile_name()

• lustre_end_log() ensures to stop 
following updates for the config log

• obd_process_config() invokes device 
specific mgc_process_config()

• config_log_end() finds the config log 
and stop watching updates

• ll_put_super() invokes class_devices_in_group() which 
iterates through devices and sets obd_force flag

• Afterwards it calls class_manual_cleanup() routine which 
invokes obdclass functions class_cleanup()
and class_detach()

Figure 8. Lustre unmounting and initiation of 
class_cleanup() in obd device lifecycle [1]



3333 Open slide master to edit

Obd Device Life Cycle – class_precleanup() and class_cleanup()

• class_cleanup() starts the shutdown of the 
obd device

• Sets obd_stopping flag to indicate cleanup 
has started

• Disconnects exports using 
class_disconnect_exports()

• Invokes generic function obd_precleanup()
to ensure all exports are destroyed

• class_cleanup() destroys uuid-export, 
nid-export, and nid-stats hashtables

• class_detach() makes the obd_attached flag to zero

• class_unregister_device() unregisters the device

• class_decref() destroys last export by calling 
class_unlink_export()

Figure 9. class_cleanup() workflow in obd device 
lifecycle [1]



3434 Open slide master to edit

Obd Device Life Cycle – class_precleanup() and class_cleanup()

• class_export_put() frees the obd device 
using class_free_dev()

• class_free_dev() call device specific 
cleanup through obd_cleanup()

• class_put_type() unloads the module

Figure 9. class_cleanup() workflow in obd device 
lifecycle [1]



3535 Open slide master to edit

Imports and Exports

• Lustre components like mdt and ost need 
one client obd device to establish 
communication between them

• Also applicable in case of Lustre client 
communicating with Lustre servers

• Client side obd device consists of exports 
and reverse imports

• Client device sends request to server using its import and server receives it using its 
export

• Imports on server devices are called reverse imports because they send requests to 
client obd devices

• Client uses its self-export to receive these call backs requests from the server

Figure 10. Import and export pair in Lustre [1]



3636 Open slide master to edit

Imports and Exports

• For any two obd devices to communicate with 
each other they need an import export pair

• lctl dl and /sys/fs/lustre directory show the 
obd devices

• Example of name of an obd device for 
communication between OST5 and MDT2 will be 
MDT2-lwp-OST5

• Client obd device that enables the communication is lwp

• lwp manages connections established from ost to mdt, and mdts to mdt0

• lwp is also used to send quota and FLD query requests

• Figure shows the communication between mdt and ost through osp client obd device

Figure 11. Communication between ost and mdt
server obd devices in Lustre [1]



3737 Open slide master to edit

Imports and Exports
• obdfilter directory from /proc/fs/lustre lists osts present on the OSS node

• All osts have export connections listed in the nid format in their respective exports'
directory

• Export connection information is stored in a file called export in each of the export 
connections directory

• Viewing the export file corresponding to MDT2 shows the following fields
– name: Shows the name of the ost device
– client: The nid of the client export connection
– connect_flags: Flags representing various configurations for the lnet and ptl-rpc connections between 

the obd devices.
– connect_data: Includes fields such as flags, instance, target_version, mdt_index and 

target_index

– export_flags: Configuration flags for export connection
– grant: Represents target specific export data



3838 Open slide master to edit

Useful APIs in Obdclass
• All obdclass related functions are declared in include/obd_class.h and definitions are found in 

obdclass/genops.c

• class_newdev() - Creates a new obd device, allocates and initializes it.

• class_free_dev() - Frees an obd device.

• class_unregister_device() - Unregisters an obd device by feeing its slot in obd_devs array.

• class_register_device() - Registers obd device by finding a free slot in in obd_devs array and 
filling it with the new obd device.

• class_name2dev() - Returns minor number corresponding to an obd device name.

• class_name2obd() - Returns pointer to an obd_device structure corresponding to the device 
name.

• class_uuid2dev() - Returns minor number of an obd device when uuid is provided.

• class_uuid2obd() - Returns obd_device structure pointer corresponding to a uuid.

• class_num2obd() - Returns obd_device structure corresponding to a minor number.



3939 Open slide master to edit

Acknowledgements

• More detailed information on the subsystems can be found in the wiki page 
"Understanding Lustre Internals"

• Thanks to Lustre team at ORNL – James Simmons, Rick Mohr and Sarp Oral

• This research used resources of the Oak Ridge Leadership Computing Facility at the 
Oak Ridge National Laboratory, which is supported by the Office of Science of the 
U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

• References
1. George, Anjus, Mohr, Rick, Simmons, James, and Oral, Sarp. Understanding Lustre Internals 

Second Edition. United States: N. p., 2021. Web. doi:10.2172/1824954.

https://wiki.lustre.org/Understanding_Lustre_Internals

	Lustre MGC and Obdclass Deep Dive
	Presentation Outline
	Introduction to MGC
	Introduction to MGC
	MGC Module Initialization
	MGC Obd Operations
	MGC Obd Operations (cont.)
	MGC Obd Operations (cont.)
	mgc_setup()
	mgc_setup()(cont.)
	Lustre Log Handling
	Log Processing in MGC
	mgc_precleanup() and mgc_cleanup()
	mgc_precleanup() and mgc_cleanup() (cont.)
	mgc_import_event()
	Introduction to Obdclass 
	obd_device structure
	MGC Life Cycle
	MGC Life Cycle
	MGC Life Cycle
	MGC Life Cycle
	MGC Life Cycle
	MGC Life Cycle
	MGC Life Cycle
	Obd Device Life Cycle – class_attach()
	Obd Device Life Cycle – class_attach()
	obd_export Structure
	Obd Device Life Cycle – class_setup()
	Obd Device Life Cycle – class_setup()
	Obd Device Life Cycle – class_setup()
	Obd Device Life Cycle – class_precleanup() and class_cleanup()
	Obd Device Life Cycle – class_precleanup() and class_cleanup()
	Obd Device Life Cycle – class_precleanup() and class_cleanup()
	Obd Device Life Cycle – class_precleanup() and class_cleanup()
	Imports and Exports
	Imports and Exports
	Imports and Exports
	Useful APIs in Obdclass
	Acknowledgements

