
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Understanding Lustre Timeouts

Rick Mohr mohrrf@ornl.gov

James Simmons simmonsja@ornl.gov

2

Overview

• Lustre uses timeouts in several places as a way of detecting
problems and ensuring forward progress
– Packet loss on the network
– Prevent a crashed client from blocking IO from other clients

• Too many timeouts to discuss all of them in detail

• Our goals:
– Discuss some of the most relevant timeouts used in Lustre
– Describe the purpose of the timeouts and any relationships between

them

3

Types of Timeouts

• Timeouts can be (roughly) split into two groups

Lustre
• Ensure RPCs complete in a finite time

– Bulk data transfers
– Granting/revoking locks
– Client evictions

• Other uses
– Imperative recovery

• Printed to console

LNet
• Ensure point-to-point communications

across the network complete in a finite
time
– LND timeouts (driver-specific)
– General LNet transactions
– Router health

• Not printed to console
– Check Lustre log or enable printing

for “neterror”

lctl set_param printk+=neterror

4

Lustre Timeouts

5

Adaptive Timeouts

• By default, Lustre enables adaptive timeouts
– Servers track completion times for RPCs and report that info to clients
– Clients use info to estimate timeouts for future requests
– Estimates can dynamically change based on performance of system
– Servers can also send an early reply to client asking for more time

• Since timeouts are dynamically determined, there aren’t many
parameters to tune
– Three most important are at_min, at_max, and ldlm_enqueue_min
– A few others control things like time increment for early replies, time

window for tracking timeout history, etc.
– Default values probably work fine for most people

6

Adaptive Timeouts (cont.)

• at_min (default = 0 s)
– Minimum time server will report for processing RPC
– Not the actual time taken to handle an RPC
– Can be increased to avoid timeouts for transient issues

• at_max (default =600 s)
– Upper limit of any service time estimate
– If reached, the RPC will time out
– Lowering this value could detect problems faster, but setting it too low

will just result in spurious timeouts for minor slowdowns
- Setting at_max = 0 will disable adaptive timeouts

7

Adaptive Timeouts (cont.)

• ldlm_enqueue_min (default = 100 s)
– Minimum timeout to enqueue a lock request
– Lock requests can be more complicated than other RPCs (ex – may

need to revoke lock on another client)
– Using same minimum as other RPC requests (at_min) doesn’t

necessarily make sense

• Commands to set these values and query historical info about
adaptive timeouts are given in the Lustre manual

8

Static Timeouts

• Static timeouts are controlled by two parameters
• timeout (default = 100 s)
– Time that client waits for server to complete an RPC
– Sometimes referred to as the ”master timeout”
– In Lustre code, it is identified as obd_timeout
– Most other timeout values are calculated from this one

• ldlm_timeout (default = 20 s/6 s for OST/MDS)
– Time that server waits for client to reply to a lock cancellation request

9

Derived Static Timeouts

• Other timeouts based on obd_timeout
– Imperative recovery timeout = 4 * obd_timeout
– LDLM completion AST timeout = obd_timeout
– LDLM blocking AST timeout = obd_timeout / 2
– Time to wait for OSC connection to become active = obd_timeout
– OBD ping interval = obd_timeout / 4
– Time server waits for client reply to AST callback = obd_timeout / 2
– PTLRPC health check = obd_timeout * 3 / 2 (instead of at_max)
– Watchdog timeout = 10 * obd_timeout

• Harder to fine-tune timeouts when they are all related

10

Static ldlm_timeout

• PTLRPC requests set a static time based on ldlm_timeout and
obd_timeout
– min(ldlm_timeout, obd_timeout / 3)

• But there are restrictions on setting ldlm_timeout:
– If ldlm_timeout > obd_timeout,

then ldlm_timeout = obd_timeout / 3

• There doesn’t appear to be any reason to set ldlm_timeout
more than a third of obd_timeout

11

Bulk IO Timeout

• There is a timeout for bulk IO that is not documented in the
Lustre manual
– lctl get_param bulk_timeout (default = 100 s)

• If the deadline set in the RPC request is greater than
bulk_timeout, then bulk_timeout is used for the deadline
instead
– Sets a hard limit on time for bulk IO regardless of other timeout values
– Lustre code doesn’t seem to alter the deadline in the RPC request itself

12

LNet

13

General LNet Timeouts

• Some LNet timeouts are not tied to a specific LND
• lnet_transaction_timeout (default = 150 s)
– Message dropped if not sent when timeout expires and retry count not

reached
– If response expected, message dropped if response not received

within the timeout

• lnet_lnd_timeout
– Not independently set; derived from lnet_transaction_timeout

lnet_lnd_timeout =
(lnet_retry_count + 1)

(lnet_transaction_timeout – 1)

14

LNet Router Timeouts

• In a routed environment, nodes will ping LNet routers
periodically to keep track of which routers are alive or dead
– Frequency of pings is controlled by live_router_check_interval

and dead_router_check_interval
– If a reply is not received before router_ping_timeout expires, the

router is considered dead

• router_ping_timeout (default = 50 s)
– Should be consistent with LND timeout
– If LND timeout is increased, may need to also increase
router_ping_timeout

15

ko2iblnd Timeouts

• timeout
– How long to wait on transmissions before considering them failed
– If not specified, value will be set to lnet_lnd_timeout discussed

earlier
– Setting timeout lower can cause problems to be detected sooner, but

setting too low could lead to spurious timeouts
– Should be based on properties of local fabric (size, congestion, etc.)
– Recommendations can vary from 10 s to 100 s

16

ko2iblnd Timeouts (cont.)

• peer_timeout (default = 180 s)
– Used to determine when a peer is down
– Default values comes from generic LNet layer, but value set for

ko2iblnd module will propagate up to LNet layer
– In a routed environment, peer_timeout should be enabled only on the

routers (set peer_timeout = 0 on clients and servers)
– In general, peer_timeout should not be less than LND timeout
– For ko2iblnd, peer_timeout should be at least twice the value of the
keepalive option

17

Summary

• Timeouts are key to ensuring Lustre resiliency

• Optimal values for timeouts are often system-specific
– Adaptive timeouts can help avoid the need for tuning
– If changes are needed, knowing the relationships between timeout

values can be helpful
– Sometimes trial and error is still needed

• There are more timeouts in Lustre than what are covered here
– Check Lustre manual and source code to learn more

18

Acknowledgments

This research used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC05-00OR22725.

19

Questions?

