SDSC

SAN DIEGO SUPERCOMPUTER CENTER

S

7/

Whamcloud

Lustre 2.16 and Beyond

Andreas Dilger
Lustre Principal Architect

S

Trends in High Performance Storage s
Whamcloud

Ever increasing demand for high-performance storage to feed data pipelines
Al/ML/ChatGPT/LLM driving surge in new users of parallel (flash) storage
Existing computation models (weather, finance, ...) increasing resolution, data sources, historical data

vVvyyvyy

Initial demands can be met by all-flash storage, but not everyone has the budget to scale flash

\4

Need to increase capacity, reduce costs, transparently access multiple storage types/tiers/hybrid

\4

Lustre already allows transparent data migration between tiers, hybrid storage within files

» Disk and QLC, combined with compression, heading to lowest $/TB and more accessible than tape
» Meta/data redundancy improves availability above hardware, simplifies hardware requirements

» Security, multi-tenancy, data isolation demands always increasing (medical, privacy, IP, legislative, ...)

2 whamcloud.com

Planned Feature Release Highlights S:B
Whamcloud

»2.16 approaching feature completion

* LNet IPv6 addressing — must-have functionality for future deployments (SuSE, ORNL)

* Optimized Directory Traversal (WBC1) — improve efficiency for accessing many files (WC)
»2.17 has major features already well underway

* Client-side data compression — reduce network and storage usage, costs (WC, UHamburg)
* Metadata Writeback Cache (WBC2) — order of magnitude better metadata speed (WC)

»2.18 feature proposals in early stages

* File Level Redundancy - Erasure Coding (FLR-EC) — reduce cost, improve availability (ORNL)
* Lustre Metadata Redundancy (LMR1) — improve availability for large DNE systems

* Client Container Image (CCI) — improved handling of aggregations of many small files

3 whamcloud.com

LNet Improvements S:)
Whamcloud

Demand for IPv6 in new deployments as IPv4 is exhausted

* Relatively few external-facing Lustre systems means 10.x.y.z is still viable for now

» [Pv6 large NID support (LU-10391 SuSE, ORNL)
* Variable-sized NIDs (8-bit LND type, 8-bit address size, 16-bit network number, 16-byte+ address)
* Interoperable with existing current LNDs whenever possible
* Enhancements to LNet/sock1nd for large NIDs mostly finished
* Work ongoing to handle large NIDs in Lustre code
o Mount, config logs, Imperative Recovery, Nodemaps, root squash, etc.

» Improved network discovery/peer health (HPE, WC) S N\

» Simplified/dynamic server node addressing (LU-14668 WC)
* Detect added/changed server interfaces automatically (LU-10360)
* Reduce (eventually eliminate) static NIDs in Lustre config logs
* Simplified handling for IPv6 NIDs by clients

whamcloud.com

https://jira.whamcloud.com/browse/LU-10391
https://wiki.lustre.org/Imperative_Recovery
https://wiki.lustre.org/images/5/5c/LUG2018-Multitenancy-Buisson.pdf
https://jira.whamcloud.com/browse/LU-14668
https://jira.whamcloud.com/browse/LU-10360

2.15

Client-Side Usability and Performance Improvements S/B
Whamcloud

Ongoing ease-of-use and performance improvements for users and admins

» Parallel file/directory rename within a directory (LU-12125 WC)
» 1lstat, 11lobdstat easier to use (LU-13705 WC) @

» 1fs find -printf formatted output of specific fields (LU-10378 ORNL)

2.16

» 1fs migrate performance improvements (LU-16587 HPE, WC)
» 1fs migrate bandwidth limit, progress updates (LU-13482 Amazon)
» Ongoing code updates/cleanup for newer kernels (ORNL, HPE, SuSE)

2.17

» Client-side Data Compression (LU-10026 WC, UHamburg, Intel)

» Buffered/DIO performance/efficiency improvements (LU-13805, LU-14950 WC)
» Erasure Coded FLR files (LU-10911 ORNL)

whamcloud.com

https://jira.whamcloud.com/browse/LU-12125
https://jira.whamcloud.com/browse/LU-13705
https://jira.whamcloud.com/browse/LU-10378
https://jira.whamcloud.com/browse/LU-16587
https://jira.whamcloud.com/browse/LU-13482
https://jira.whamcloud.com/browse/LU-10026
https://jira.whamcloud.com/browse/LU-13805
https://jira.whamcloud.com/browse/LU-14950
https://jira.whamcloud.com/browse/LU-10911

Client-Side Data Compression (WC, UHamburg 2.17+)’§/TB

. Whamcloud
Increased capacity and lower cost for all-flash OSTs

* Parallel compression of RPCs on client cores for GB/s speeds, no server CPU overhead!

» (De-)Compress (1zo, 1z4, gzip,...) RPC on client in chunks (64KiB-1MiB+) (LU-10026)

* Per directory or file component selection of algorithm, level, chunk size (PFL, FLR)
* Keep "uncompressed" chunks as-is for incompressible data/file (.gz, . jpg, .mpg, ...)

Client RAM 64KiB 64KiB 64KiB vee 1MB of chunks eee 64KiB
Incompressible data
left unchanged Uncompressed Data

RPC staging buffer AKiB OKiB 64KiB oee B Compression Header (32B)
t Compressed Data

OST object storage AKiB OKiB 64KiB see B 4KB Alignment Padding

» Client writes/reads whole chunk(s), (de-)compresses to/from RPC staging buffer
* Larger chunks improve compression, but higher decompress/read-modify-write overhead

» Optional write uncompressed to one FLR mirror for random 10 pattern
» Optional data (re-)compression during mirror/migrate to slow tier (via data mover)

6 whamcloud.com

https://jira.whamcloud.com/browse/LU-10026

Server-side Capacity and Efficiency Improvements S:)
Whamcloud

Ongoing performance and capacity scaling for next-gen hardware and systems

» OST object directory scalability for multi-PB OSTs (LU-11912 WC)
* Regularly create new object subdirectories (every 32M creates vs. 4B creates)
* Better handling for billions of objects, grouping by age optimizes RAM and IOPS

» Read-only mounting of OST and MDT devices (LU-15873 WC)
» Improved e2fsck for large dir and shared block errors (LU-14710, LU-16171 WC)

» 11ljobstat utility for easily monitoring "top" jobs (LU-16228 WC)
2.16 * Add 10 size histograms to job_stats output, handle bad job names better
2.17 P Reduced transaction size for many-striped files/dirs (LU-149518 WC)

» Improved Idiskfs mballoc efficiency for large filesystems (LU-14438 Google, WC, HPE)
» Parallel e2fsck for pass2/3 (directory entries, name linkage) (LU-14679 WC)

7 whamcloud.com

https://jira.whamcloud.com/browse/LU-11912
https://jira.whamcloud.com/browse/LU-15873
https://jira.whamcloud.com/browse/LU-14710
https://jira.whamcloud.com/browse/LU-16171
https://jira.whamcloud.com/browse/LU-16228
https://jira.whamcloud.com/browse/LU-14918
https://jira.whamcloud.com/browse/LU-14438
https://jira.whamcloud.com/browse/LU-14679

2.15

Improved Data Security and Containerization s

Growing dataset sizes and varied uses increases need to isolate users and their data

S

Whamcloud

’\\l‘

Filenames encrypted on client in directory entries (LU-13717 WC)

Migrate/mirror of encrypted files without key (LU-14667 WC)

Ny
Sy
L
_——
—

Nodemap project guota mapping, squash all files to project (LU-14797 WC)

2.16

VVvVVYyVVYVYYVYY

l

Encrypted file backup/restore/HSM without key (LU-16374 WC) Q
//lll

Read-only mount enforced for nodemap clients (LU-15451 WC)
Kerberos authentication improvements (LU-16630, LU-16646 WC, NVIDIA)
Nodemap Role-Based Admin Controls (fscrypt, changelog, chown, quota) (LU-16524 WC)

Cgroup/memcg memory usage limits for containers/jobs on clients (LU-16671 WC, HPE)

whamcloud.com

https://jira.whamcloud.com/browse/LU-13717
https://jira.whamcloud.com/browse/LU-14667
https://jira.whamcloud.com/browse/LU-16374
https://jira.whamcloud.com/browse/LU-14797
https://jira.whamcloud.com/browse/LU-15451
https://jira.whamcloud.com/browse/LU-16630
https://jira.whamcloud.com/browse/LU-16646
https://jira.whamcloud.com/browse/LU-16524
https://jira.whamcloud.com/browse/LU-16671

Metadata Scaling Improvements (WC 2.15+) S:}
Whamcloud

Improve usability and ease of DNE metadata horizontal performance/capacity scaling

» DNE MDT Space Balance - load balancing with normal mkdir (LU-13417, LU-13440)
* Round-robin/balanced subdirs, limited layout inheritance depth, less need for striped dirs

» Single-dir migration without recursion - "1fs migrate -m -d <dir>" (LU-14975)
2.15 p Balanced migration prefers less full MDTs - "1fs migrate -m -1 <dir>" (LU-13076)
2.16 P DNE inode migration improvements (LU-14719, LU-15720)
* Pre-check target space, stop on error, improved CRUSH2 hash

» More robust DNE MDT llog recovery (LU-16203, LU-16159)

* Handle errors and inconsistencies in recovery logs better

» DNE locking, remote RPC optimization (LU-15528)
* Distributed transaction performance, reduce lock contention

2.17 P Lustre Metadata Robustness/Redundancy (LU-12310)
* Phase 1 to distribute/mirror MDTOO0OO services to other MDTs

9 whamcloud.com

https://jira.whamcloud.com/browse/LU-13417
https://jira.whamcloud.com/browse/LU-13440
https://jira.whamcloud.com/browse/LU-14975
https://jira.whamcloud.com/browse/LU-13076
https://jira.whamcloud.com/browse/LU-14719
https://jira.whamcloud.com/browse/LU-15720
https://jira.whamcloud.com/browse/LU-16203
https://jira.whamcloud.com/browse/LU-15528
https://jira.whamcloud.com/browse/LU-15528
https://jira.whamcloud.com/browse/LU-12310

Batched Cross-Directory Statahead (WBC1) (WC 2.16) ok
Whamcloud

Improved access speed and efficiency for large directories/trees
* |0500 mdtest-{easy/hard}-stat performance improved 77%/95%

» Batched RPC infrastructure for multi-update operations (LU-13045)
* Allow multiple getattrs/updates packed into a single MDS RPC

BFS

* More efficient network and server-side request handling subdirB
» Batched statahead for 1s -1, find, etc. (LU-14139)
- Aggregate getattr RPCs for existing statahead mechanism oF> subdirBB Jig fileC101
» Cross-Directory statahead pattern matching (LU-14380) B .ze01 WSiecios
* Detect breadth-first (BFS) depth-first (DFS) directory tree walk
* Direct statahead to next file/subdirectory based on tree walk pattern \ A= i1cBB02 RZ fileC103
* Detect strided pattern for alphanumeric ordered traversal + stat()

ce.g fileP0ol,fileP1001,file002001.. or filel filel7,file31,..order — [RLCEEOEI —|illEeilor:

whamcloud.com

https://jira.whamcloud.com/browse/LU-13045
https://jira.whamcloud.com/browse/LU-14139
https://jira.whamcloud.com/browse/LU-14380

Metadata Writeback Cache (WBC2) (WC 2.17+) S:B

. . o . . Whamcloud
10-100x speedup for single-client file/dir create-intensive workloads
* Genome extraction/processing, untar/build, data ingest, producer/consumer
» Create new dirs/files in client RAM without RPCs (LU-10983)
* Lock new directory exclusively at mkdir time
* Cache new files/dirs/data in RAM until cache flush or remote access Chent I (Client)
» No RPC round-trips for file modifications in new directory ’N
» Batch RPC for efficient directory fetch and cache flush - IF'I 2
iles & iles
» Files globally visible on remote client access D,rs Dirs
* Flush top-level entries, exclusively lock new subdirs, unlock parent g,
* Repeat as needed for subdirectories being accessed remotely B
* Flush rest of tree in background to MDS/OSS by age or size limits
» Productization of WBC code well underway
* Some complexity handling partially-cached directories i

* Able to benchmark under intensive multi-client workloads S

» WBC for pre-existing directories, PCC integration in later release
* Read all directory entries before create to avoid duplicate filenames

whamcloud.com

https://jira.whamcloud.com/browse/LU-10983

Lustre Metadata Redundancy (LU-12310) (2.17+) S:B
Whamcloud

Improve metadata (data) availability in face of network/server errors
* In early discussion and planning stages

» LMR1a: Redundant services on other MDTs
* Mirror FLDB, Quota, flock() across MDTs

» LMR1b: DNE transaction performance

* Need to optimize if all mkdir are mirrored transactions
* Better distributed transaction logging format
2.17 « Improves all DNE operation performance

2.18 P LMR1c: Replicate top-level dirs for availability
* ROOT/ directory (rarely changed) mirrored to 2+ MDTs
* No replication for regular file inodes in this phase
2.19+P LMR2/3 phases needed for full MDT redundancy

* Full directory tree replication, file inode replication
* Configurable mirror setting per directory/tree (1fs setdirstripe)
* Recovery, LFSCK, rebuild replicated directories if full MDT loss

Dlr FID FID D|r
2:6 5:9

MDTO0002 MDTOO005

12

whamcloud.com

https://jira.whamcloud.com/browse/LU-12310

Client Container Image (CCl) (2.18+) S:B
4 Client N[Client N Whameioud

C

Need improved handling of aggregations of many files
* Create, access, (modify?), delete many files without untar/unzip

» CCl allows efficiently accessing filesystem image many files
» Low I/0O overhead, few file lock(s), high IOPS per client
* Readahead and write merging for data and metadata
* Client-local in-RAM filesystem operations with very low latency
» Access, migrate, replicate image with large bulk OSS RPCs
* Thousands of files aggregated with MB-sized network transfers
* Leverage existing high throughput OSS bulk transfer rates
* 1GB/s OSS read/write is about 30,000 32KB files/sec
» Unregister+delete container to mass-delete all files within

* Simplifies user data management, accounting, job cleanup
* Avoid MDS overhead when dealing with groups of related files

whamcloud.com

4 Client N

CCI-RO

Dirs

CCI-RW

Dirs

"

\
.

Client

~

)

Client Container Image (CCl) (2.18+) S:B
Whamcloud

» Ext4 filesystem images used ad-hoc with Lustre today
* Read-only cache of many small files manually mounted on clients
* Root filesystem images for diskless clients/VMs
» Container Image is local ext4/ldiskfs image mounted on client
* Directory tree (maybe millions of files) stored in one CCI Lustre file
* Best for self-contained workloads (Al, Genomics, ensemble runs)
* Can configure with job preamble script today, for read-only data
» CCl automates container image handling into Lustre TODO
* Image is registered to Lustre directory to control future access
* Transparently mount registered image at client on directory access

* Image data blocks read (written) from/to OST(s) and/or client cache
* Automatically unmount from client when idle or under contention

» Internally mount and export from MDS for multi-client access
* Will need some modifications to CCl file to Lustre-ize files

whamcloud.com

Comparison and Summary of WBC vs. CCl

Metadata Writeback Cache Client Container Image

* Keep normal namespace * Segregated directory subtree

* Transparent to users * Needs coordination with user/job

* Very low latency metadata operations * Not for all usage patterns

* Faster single client * Faster total performance

* Network batch RPCs improves other ops * Network bulk 10 avoids MDS workload

* Lower total overhead due to fewer layers * Bulk file/data management (e.g. fast unlink)

* Metadata tiering/HSM aggregation

e Significant improvements for evolving HPC workloads
* Leverages substantial functionality that already exists
* Needs supporting project to drive steady progress

S

7/

Whamcloud

Thank You!
Questions?

CCI-RO

CCI-RO

17

Dirs

s &
7N

Dirs

CCI-SHARED

Dirs

CCIl Access Models Whamcloud

» Need to integrate image handling on Lustre client/MDS
* Integrate CCI creation with job workflow is easiest
* CCl layout type on parent directory creates CCl upon mkdir
* Enhance Idiskfs online resize to manage image size

» Client exclusively mounts CCI(s) and modifies locally
* For initial image creation/import from directory tree
* For workloads that run independently per directory
» Multiple clients read-only mount single image
* Shared input datasets (e.g. gene sequence, Al training)
» MDS exports shared read-write image to many clients
* Internal mount at MDS attaches image to namespace
* Use Data-on-MDT to transparently export image tree to clients
» Process whole tree of small files for HSM/tiering
* Efficiently migrate tree to/from flash tier, to/from archive

whamcloud.com

Single Client 32KB File Create Performance (MDS+0SS)

70,000 2,000
1,800
60,000
1,600
50,000 1.400
o
- 1,200 o=
- 40,000 s
34_'; 1,000 2
S =
Q oo
—= 30,000 >
- 800 o
=
20,000 600
400
10,000
200
5 B 5
1 2 4 8 12 24 48 96

Processes

1 client, n processes, 12000 files/process mdtest -n 12000 -d S{OUTDIR} -u -v -p 20 -w 32768 -e 32768 -F -i 3
MDS, OSS: 6x 960GB NVMe, 2.7GHz 24-core 8186, 48GB RAM

18 whamcloud.com

Single Client 32KB File Create Performance (MDS vs. CCl)

140,000 4500
CCl Bandwidth (MB/s)

Em CCl| FlleCreate/sec(Mean for 3 iterations) B FlleCreate/sec

Throughput (MB/s)

4000
120,000
3500
100,000
3000
» 80,000 —
g
(5]
-
o
@
i 60,000 2000
1500
40,000
1000
20,000
500
o) o

1 2 a 8 1 B 24 48
#threads/CClI Filesystems

» Early testing of manually-configured CCl shows significant promise

19 whamcloud.com

Single Client 32KB File Create Performance (MDS vs. CCl))

/7
600,000 20000
mmmmm CClI FlleCreate/sec(Mean for 3 iterations)
H Flle Create/sec
EN 4 .15 FlleCreate/sec
18000
CCI Bandwidth (MB/s)
500,000 Throughput (MB/s)
16000
14000
400,000
Network limit 12000
v
e S
=
C
8 300,000 10000
@
i
8000
200,000
6000
4000
100,000
PR 2000
o I 5

1x12k 2x12k 4x12k 8x12k 12x12k 16x12k 16x100k 16x200k 16x400k
#threads/CClI Filesystems

» 4.15 CCl improvement due to Ubuntu 4.15 kernel loopback driver
» Early testing of CCl prototype shows promise

20 whamcloud.com

