
Patrick Farrell

LUG 2022: Unaligned DIO & I/O Path Futures

whamcloud.com

Lustre Data I/O Path

► The data I/O path is “What Lustre does when you call read() or write()” (or access mmap’ed data)

► Data flows from userspace, through the client, over the network, and to storage (and back)

► We’re going to talk about the client part.

► POSIX gives two ways to do data I/O:
Buffered I/O
Direct I/O

• Mmap is a type of buffered I/O

whamcloud.com

Digression: Direct I/O Improvements in 2.15

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Buffered Write Buffered Read DIO Write DIO Read

M
iB

/s

Lustre 2.15: Buffered vs Direct

2.14

2.15

10x

whamcloud.com

Lustre Data I/O Path: Direct I/O

► Buffered means ‘Uses the Linux page cache’

• Good: Allows read ahead and write aggregation, converting small application I/O to large file system operations

• Good: Async writes and readahead are perfect for hiding latency of slow devices (HDD)

• Good: Allows any I/O – no alignment requirements

• Bad: Low single stream performance (max a few GiB/s) due to cost of the page cache

• Bad: Bottlenecks for multiple processes to 1 file, due to page cache locking

► Direct I/O means ‘Direct from user memory, does not use the page cache’

• Good: Very high single stream performance with large I/O – 18+ GiB/s

• Good: Minimal locking, means no bottlenecks

• Good: Very linear scaling as processes are added (to 1 file or many files)

• Bad: Synchronous. I/O must go directly to disk → Exposes latency of slow devices. (Bad for small I/O.)

• Bad: Alignment requirements. Both size of I/O and location in memory must be a multiple of page size. (Means
most applications cannot use it.)

whamcloud.com

Buffered vs Direct: Summary

Buffered I/O Direct I/O

Small I/O Performance
✓ X

Large I/O Performance
X ✓

Many Processes
X ✓

High latency Storage
✓ X

Unaligned I/O
✓ X

whamcloud.com

Buffered vs Direct: Performance with I/O Size

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

4K 16K 64K 256K 1M 4M 16M 64M 256M

M
iB

/s

Performance with I/O Size: Write

Buffered

Direct

whamcloud.com

Buffered vs Direct: Small I/O Performance

0

200

400

600

800

1000

1200

1400

1600

1800

2000

4K 16K 64K 256K 1M

M
iB

/s

Performance with I/O Size: Small Writes

Buffered

Direct

whamcloud.com

Buffered + Direct: Can we have it all?

► Strengths and weakness of buffered I/O and direct I/O pair up perfectly

► Can we dynamically select the one to use?

► Use buffered I/O for small I/O and direct I/O for large I/O

► We could even maybe do it inside the file system – no need for app changes

► But there’s a sticking point:
Alignment requirements. Can’t do arbitrary I/O as direct I/O, because I/O can be any size (and
memory isn’t usually aligned).

► Let’s step back and consider.

whamcloud.com

I/O Alignment: Why is it required?

► No read-modify-writes for blocks (block size is always <= PAGE_SIZE)

• Conflicting read-modify-write ops to the same block must be resolved

• Traditionally done in the page cache

• Direct I/O avoids this by not allowing unaligned I/O

• But Lustre can handle read-modify-write transparently on the server(!)

► Data for RDMA must be page aligned

• Yes, some devices support unaligned RDMA, but it’s much slower.

• Buffered I/O data is aligned by the page cache before sending out

► Key point:
Direct I/O is aligned in userspace, buffered I/O is aligned by the page cache, but both are aligned

whamcloud.com

Buffered I/O: Costs of Alignment(?)

► Buffered uses page cache to get alignment, but page cache is expensive, because:

• Memory allocation

• Memcopy()

• Cache management: Setup & tracking

► Let’s break down the cost of these…

► “Data copying is bad”

• Article of faith.

► But cache setup is much worse.

► For large buffered I/O, Lustre spends:

• 15% of time on data copy

• ~65%(!) on cache setup

• 10% allocation (10% other)

► Allocating every page, locking it and inserting into the cache…. Costs pile up.

whamcloud.com

Aligning I/O: No cache required

► We don’t need a cache to get alignment – just a buffer:

► A cache can be used repeatedly & accessed from multiple threads

• Requires concurrency management and locking

► Buffer is local to the I/O which created it

• Only one thread can ever access it – no locking required

► No need for cache setup or locking(!)

whamcloud.com

Unaligned Direct I/O

► Inside the kernel…

• Allocate an aligned buffer

• Copy data to/from the buffer

• Do direct I/O from the buffer

o (Swap last two steps for read vs write)

► Saves the 65% of time spent on cache setup

► Implies a buffered I/O speedup from 1400 MiB/s to ~4 GiB/s (for single threaded workloads)

► Let’s talk numbers…

whamcloud.com

Caveat on Numbers

► Hardware is different – This hardware can only do ~10 GiB/s single threaded DIO, not 18 GiB/s (max
on other hardware)

► Consider unaligned DIO in relative terms to DIO

► This is a prototype and missing various optimizations…

whamcloud.com

Unaligned DIO: Write Performance

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4K 16K 64K 256K 1M 4M 16M 64M 256M

M
iB

/s

Write Size

Performance with I/O Size (Write)

Buffered

Aligned DIO

Unaligned DIO
3.2 GiB/s

8.2 GiB/s

1.0 GiB/s

whamcloud.com

Unaligned Direct I/O: Performance

► 3.2 GiB/s single threaded write is nice, but just 40% of aligned DIO (8 GiB/s here)

► Well, data copy and memory allocation are pretty time consuming.

► But, yes, we can do better.

► Memcopy() for buffered I/O is single threaded, because it’s not any faster to parallelize – locking and
coordination of cache bottlenecks

► But DIO is different…

whamcloud.com

Unaligned DIO: Read Performance

0

2000

4000

6000

8000

10000

12000

4K 16K 64K 256K 1M 4M 16M 64M 256M

M
iB

/s

Read Size

Performance with I/O Size (Read)

Buffered

Aligned DIO

Unaligned DIO

10.5 GiB/s

8 GiB/s

2.0 GiB/s

whamcloud.com

Unaligned Direct I/O: Performance

► Unaligned DIO read is at 8 GiB/s of 10.5 GiB/s for DIO (76%)

► Copy for unaligned DIO read is parallelized

• Farms out data copy for each DIO to many daemon threads

► Data copy for write will be parallelized, but is trickier – not done yet in the prototype

► Read does not have allocation parallelized, just copy

► Read & write will have both allocation and copy parallelized, so expect >76% of DIO performance

► Will scale with DIO performance – 18 GiB/s DIO implies ~13 GiB/s unaligned DIO

• Sublinear scaling, % relative to DIO will drop as DIO speed rises

whamcloud.com

Unaligned Direct I/O & Hybrid I/O: The Plan

► Implement unaligned direct I/O

► Test and optimize

► Once performance is good and bugs worked out:

► Implement hybrid I/O path

• Userspace does simple read() or write() calls

• Lustre decides internally to do page cache I/O, or to do unaligned direct I/O (or aligned direct I/O if possible)

• Gets the best of both worlds – readahead and write aggregation at small sizes, high efficiency at large sizes

whamcloud.com

Hybrid I/O: Dreaming big

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

4K 16K 64K 256K 1M 4M 16M 64M 256M

M
iB

/s

Write Size

Notional Performance with I/O Size (Write)

Buffered

Aligned DIO

Hybrid IO

13.4 GiB/s

16.7 GiB/s

1.0 GiB/s

whamcloud.com

Unaligned Direct I/O and direct I/O: Future work

► Unaligned direct I/O: Lustre 2.16

• Will allow direct I/O which is not a multiple of page size

• Still strictly opt-in, does nothing if you’re not using O_DIRECT

► Hybrid I/O: 2.16+

• No firm plan – depends on other commitments

• Aiming for gradual phase in - use in more situations as we can be sure it improves performance there

► Further DIO efficiency improvements

• Referenced in previous work – DIO path is 18 GiB/s today, can be pushed to 25-35 GiB/s

• Will boost hybrid I/O path

whamcloud.com

Thank you

► Thank you for listening.

► See LU-13805 for further details

► See my LAD ‘21 talk for more on DIO improvements

► Questions to pfarrell@whamcloud.com

► Thanks to Nathan Rutman for an interesting question in 2020

mailto:pfarrell@whamcloud.com

