S

s/

Whamcloud

LUG 2022: Unaligned DIO & I/0O Path Futures

Patrick Farrell

O

don

Lustre Data I/O Path g/?’
Whamcloud

The data I/O path is “What Lustre does when you call read() or write()” (or access mmap’ed data)
Data flows from userspace, through the client, over the network, and to storage (and back)
We’re going to talk about the client part.

POSIX gives two ways to do data I/O:
Buffered 1/0O
Direct I/O

* Mmap is a type of buffered I/O

vVvyyvyy

whamcloud.com

S

Digression: Direct I/O Improvements in 2.15 ©7
Whamcloud
Lustre 2.15: Buffered vs Direct
18000
m2.14
16000
m2.15
14000
12000
&10000
FEE 8000 10x
6000
4000
N
Buffered Write Buffered Read DIO Write DIO Read

whamcloud.com

Lustre Data 1/O Path: Direct /0O S,B
Whamcloud

» Buffered means ‘Uses the Linux page cache’
* Good: Allows read ahead and write aggregation, converting small application /O to large file system operations
* Good: Async writes and readahead are perfect for hiding latency of slow devices (HDD)

Good: Allows any I/O — no alighment requirements

Bad: Low single stream performance (max a few GiB/s) due to cost of the page cache

Bad: Bottlenecks for multiple processes to 1 file, due to page cache locking

» Direct I/0O means ‘Direct from user memory, does not use the page cache’
* Good: Very high single stream performance with large 1/0 — 18+ GiB/s
* Good: Minimal locking, means no bottlenecks

Good: Very linear scaling as processes are added (to 1 file or many files)

Bad: Synchronous. /O must go directly to disk = Exposes latency of slow devices. (Bad for small 1/0.)

Bad: Alignment requirements. Both size of I/O and location in memory must be a multiple of page size. (Means
most applications cannot use it.)

whamcloud.com

S

Buffered vs Direct: Summary o
Whamcloud

Small I/O Performance \/ X

Large I/O Performance
Many Processes

High latency Storage

Unaligned I/O

v
v
X
X

LN X X

whamcloud.com

S

Buffered vs Direct: Performance with 1/0 Size °7
Whamcloud

Performance with 1/O Size: Write

18000

16000

14000

12000

10000
—e—Buffered

MiB/s

8000 —e—Direct
6000
4000

2000

——

..7
0 ® > ——

4K 16K 64K 256K 1M 4M 16M 64M 256M

whamcloud.com

S

Buffered vs Direct: Small I/O Performance 7
Whamcloud

Performance with I/0 Size: Small Writes
2000

1800
1600

1400

1200

1000 —e—Buffered

MiB/s

—e—Direct
800

600

400

200

4K 16K 64K 256K 1M

whamcloud.com

Buffered + Direct: Can we have it all? S/B
Whamcloud

» Strengths and weakness of buffered 1/0 and direct I/O pair up perfectly

» Can we dynamically select the one to use?

» Use buffered I/O for small I/0 and direct I/O for large 1/0O

» We could even maybe do it inside the file system — no need for app changes

» But there’s a sticking point:

Alignment requirements. Can’t do arbitrary 1/O as direct I/O, because 1/O can be any size (and
memory isn’t usually aligned).

» Let’s step back and consider.

whamcloud.com

/0 Alignment: Why is it required? S/B

Whamcloud

» No read-modify-writes for blocks (block size is always <= PAGE_SIZE)
* Conflicting read-modify-write ops to the same block must be resolved
* Traditionally done in the page cache
* Direct I/O avoids this by not allowing unaligned /0O
* But Lustre can handle read-modify-write transparently on the server(!)

» Data for RDMA must be page aligned
* Yes, some devices support unaligned RDMA, but it’s much slower.
 Buffered I/O data is aligned by the page cache before sending out

» Key point:
Direct I/O is aligned in userspace, buffered 1/0 is aligned by the page cache, but both are aligned

whamcloud.com

Buffered 1/O: Costs of Alighnment(?) S/B
Whamcloud

» Buffered uses page cache to get alignment, but page cache is expensive, because:
* Memory allocation
* Memcopy()
* Cache management: Setup & tracking

» Let’s break down the cost of these...
» “Data copying is bad”

* Article of faith.
» But cache setup is much worse.

» For large buffered 1/0, Lustre spends:
* 15% of time on data copy
* ~“65%(!) on cache setup
* 10% allocation (10% other)

» Allocating every page, locking it and inserting into the cache.... Costs pile up.

whamcloud.com

Aligning 1/0O: No cache required g/?’
5 g/ a Whamcloud

» We don’t need a cache to get alignment — just a buffer:
» A cache can be used repeatedly & accessed from multiple threads

* Requires concurrency management and locking
» Bufferis local to the I/O which created it
* Only one thread can ever access it — no locking required

» No need for cache setup or locking(!)

whamcloud.com

Unaligned Direct 1/0O S:?’
Whamcloud

» Inside the kernel...
* Allocate an aligned buffer

* Copy data to/from the buffer
* Do direct I/O from the buffer

o (Swap last two steps for read vs write)
» Saves the 65% of time spent on cache setup
» Implies a buffered 1/O speedup from 1400 MiB/s to ~4 GiB/s (for single threaded workloads)
» Let’s talk numbers...

whamcloud.com

S

Caveat on Numbers 7
Whamcloud

» Hardware is different — This hardware can only do ~10 GiB/s single threaded DIO, not 18 GiB/s (max
on other hardware)

» Consider unaligned DIO in relative terms to DIO
» This is a prototype and missing various optimizations...

whamcloud.com

Unaligned DIO: Write Performance 7

anAas _____ _B_ _ _.1
Performance with 1/0O Size (Write)
9000

8.2 GiB/s

8000
7000
6000

5000
—e—Buffered

—o—Aligned DIO

MiB/s

4000

3000 —e—Unaligned DIO

2000

1000 ———

4K 16K 64K 256K 1M 4M 16M 64M 256M
Write Size

whamcloud.com

Unaligned Direct I/O: Performance S/B
Whamcloud

» 3.2 GiB/s single threaded write is nice, but just 40% of aligned DIO (8 GiB/s here)
» Well, data copy and memory allocation are pretty time consuming.
» But, yes, we can do better.

» Memcopy() for buffered I/0 is single threaded, because it’s not any faster to parallelize — locking and
coordination of cache bottlenecks

» But DIO is different...

whamcloud.com

S

Unaligned DIO: Read Performance 7
Performance with 1/0 Size (Read) 1
12000
10.5 GiB/s
10000
8 GiB/s
8000
é 6000 —e—Buffered
—o—Aligned DIO
4000 —e—Unaligned DIO
2.0 GIB/S
2000
0
256K 64M 256M

Read Size

whamcloud.com

)

Unaligned Direct 1/0: Performance 7
Whamcloud

v

Unaligned DIO read is at 8 GiB/s of 10.5 GiB/s for DIO (76%)

Copy for unaligned DIO read is parallelized
* Farms out data copy for each DIO to many daemon threads

\4

Data copy for write will be parallelized, but is trickier — not done yet in the prototype

Read does not have allocation parallelized, just copy

Read & write will have both allocation and copy parallelized, so expect >76% of DIO performance
Will scale with DIO performance — 18 GiB/s DIO implies ~13 GiB/s unaligned DIO

* Sublinear scaling, % relative to DIO will drop as DIO speed rises

vVvyyvyy

whamcloud.com

Unaligned Direct I/O & Hybrid I/O: The Plan S/B
Whamcloud

» Implement unaligned direct 1/0
» Test and optimize
» Once performance is good and bugs worked out:
» Implement hybrid I/0 path
* Userspace does simple read() or write() calls

* Lustre decides internally to do page cache I/O, or to do unaligned direct I/O (or aligned direct /O if possible)
* Gets the best of both worlds — readahead and write aggregation at small sizes, high efficiency at large sizes

whamcloud.com

Hybrid I/O: Dreaming big 7

anAas _____ _B_ _ __’
Notional Performance with 1/O Size (Write)

18000 16.7 GiB/s

16000

14000 13.4 GiB/s

12000

10000
—e—Buffered

—e—Aligned DIO
—eo—Hybrid 10

MiB/s

8000
6000
4000

2000 1.0 GiB/s
—g

4K 16K 64K 256K 1M aM 16M 64M 256M
Write Size

whamcloud.com

Unaligned Direct I/O and direct I/O: Future work S/B
Whamcloud

» Unaligned direct I/O: Lustre 2.16
* Will allow direct I/O which is not a multiple of page size
* Still strictly opt-in, does nothing if you're not using O_DIRECT
» Hybrid 1/0: 2.16+
* No firm plan — depends on other commitments
* Aiming for gradual phase in - use in more situations as we can be sure it improves performance there

» Further DIO efficiency improvements
* Referenced in previous work — DIO path is 18 GiB/s today, can be pushed to 25-35 GiB/s
* Will boost hybrid 1/O path

whamcloud.com

Thank you S:?’
Whamcloud

» Thank you for listening.

» See LU-13805 for further details

» See my LAD ‘21 talk for more on DIO improvements
» Questions to pfarrell@whamcloud.com

» Thanks to Nathan Rutman for an interesting question in 2020

whamcloud.com

mailto:pfarrell@whamcloud.com

