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Introduction

First things first: THIS IS A PROTOTYPE!
– We haven’t implemented this in production (and probably won’t)

Why do this?

• Want to know what’s happening on our filesystem

• Traditional techniques don’t scale well
– Running `find` from a client can take hours (or more likely, days) and 

can heavily load the MDS
– `lfs find` is better but still not fast enough
– Lustre changelog can’t keep up
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Basic Design Goals

• Efficiently & quickly scan the filesystem
– In this case, “quickly” means “an hour or so”
– Actually, anything faster than one day is acceptable

• Don’t overload the MDS
– We don’t want the scanning operation to noticeably slow down 

normal filesystem operations

• Incremental scans are preferred, but we do need to be able to 
do a full rescan if necessary.
– Incremental scans are probably necessary to meet the two previous 

requirements
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ZFS Snapshots?

ZFS snapshots are potentially very useful:

• Low cost to create & destroy (nearly instant)

• Keeping them around only uses space for files that have 
changed

• They allow us to have a consistent view into the filesystem

• `zfs diff` can report differences between two snapshots

This all sounds promising, BUT…
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…”Normal” ZFS diff won’t work

• In order to actually run `zfs diff`, the ZFS filesystem has to be 
mounted

• For performance reasons, Lustre doesn’t actually mount the ZFS 
filesystem(s) that are the backing-store for OSTs & MDTs.

How to resolve this impasse?

Use NVMe-Over-Fabrics to DUAL MOUNT the zpool for the MDT(!) 
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Test Hardware
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Order of Operations

1. Create a new snapshot - lctl snapshot_create

2. Import the zpool read-only

3. Mount filesystem (again, read-only)

4. Mount the Lustre snapshot (also read-only)

5. Run zfs diff on the 2 most recent snapshots
a. Pipe the diff output into a parser script that will stat the files, do any pre-processing 

and push the results out to Kafka & Elasticsearch.

6. Unmount Lustre & ZFS filesystems and export the zpool

7. (Optional) Delete old snapshot
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Ensuring No Writes To The ZPool

• `zpool import` has a read-only flag

• Checked with the developers and confirmed by inspecting the 
ZFS source code:  when the read-only flag is used, the zdev
devices are all opened read-only

• Considered using cgroups to add an additional level of safety
– Didn’t get a chance to actually try this out though
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Performance Numbers

(For test setup using a single NVMe device for the MDT)
– Diff’s / second: ~1900 (~100% CPU)
– Stat’s / second: ~11K (~98% CPU)
– Kafka message ingest rate: >50K
– Combined (diff+stat+message publication): 1900/s (~135% CPU)

Does this scale up?

`zfs diff` seems to be the limiting factor: 1 thread, 100% CPU.
– That’s 6.8M changed files per hour.
– In a filesystem with 5 billion files, that’s 0.13%.  Is that sufficient?
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The Expense Of ‘stat’

• A lot of the expense of the stat() function comes from the need 
to get size data from every single OSS that the file is striped 
across.

• For this application, LSOM (Lazy Size On MDT) would be 
sufficient.
– Landed in v2.12

• Need some mechanism to tell Lustre to reply to stat requests 
with lazy size
– LU-10934 implements this (using the statx() call instead of stat())
– Landed in v2.14
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Incremental Scan vs. Full Scan

Diffing two snapshots is efficient for incremental scans, but what if 
we have to do a full (re)scan of the filesystem?

Answer:  Take a snapshot right after the filesystem is set up and 
keep it forever.  To do a full (re)scan, diff the latest snapshot 
against this baseline snapshot.

• Since the filesystem is empty when the base snapshot is 
created, there’s essentially zero cost to keeping this snapshot.
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Thoughts & Conclusions

• This design only works for a fairly niche use-case:
– MDT’s must use ZFS and NVMe devices
– Networking that supports NVMe-over-Fabrics
– A system large enough that other methods don’t work
– Normal workloads that aren’t limited by IOPS

• Actual operations would be perilous
– One simple mistake – forgetting the read-only flag on the import –

could result in your MDT being destroyed
– It was also unclear if we could ever *prove* that this technique is safe

• Best we could say was “It didn’t corrupt the MDT during our testing.”
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Closing Remarks & Questions
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