
Lustre System Administration Tutorial
Rick Mohr

HPC Storage Engineer
University of Tennessee

Dustin Leverman
HPC Storage Engineer

Oak Ridge National Laboratory

Outline
1:00PM - Configuration/Tuning: (Dustin - 30 min)
• General benchmarking
• Router/client/server tuning
1:30PM - Monitoring/Metrics: (Dustin - 1 hour)
• Performance monitoring
• Health monitoring
2:30PM - 15 minute break
2:45PM - When Things Go Wrong: (Rick - 1 hour)
• Lustre recovery
• Gathering debug data: kdump, lctl dk
• Network debugging
• Repairing filesystem issues
3:45PM - Other Useful Admin Info: (Rick - 30 min)
• Striping
• How RR and QOS allocator work
• Layouts
• PFL
• DoM
4:15PM – 45 minute panel session

2Copyright © 2015 OpenSFS.

Benchmarking

• Keep vendors accountable for requirements and system
acceptance

• Establishing a performance baseline helps to detect performance
issues later on.

• Benchmark at the different system layers:
§ Block-device/multipath-device (XDD/sgp_dd)

– ZFS dRAID exception
§ LDISKFS/ZFS (fio)
§ LNET (lnet-selftest)
§ Filesystem data (obdfilter-survey)
§ Filesystem metadata (mdtest)
§ Filesystem data and metadata (IOR)

• There are many tools that can be used, these are just examples

RAID set block-device

MDTOST
Multipath block-device

LNET Filesystem

Benchmarking block/multipath device

• Tuning can be different for block and multipath devices. Need to

check both.

• Testing /dev/sd vs. /dev/sg can tell you how caching is impacting

performance.

§ Need to understand connectivity to RAID system if IB/SAS/FC attached so

you don’t stress out the same LUN more than once

• XDD or sgp_dd are good tools to use

• XDD example:

§ /opt/xdd/bin/xdd.linux -rwratio 100 -targets 10

/dev/sg{0,2,4,6,8,30,32,34,36,38} -sgio -reqsize 1 -numreqs 10000000 -

blocksize 1048576 -verbose -passes 3 -queuedepth 16 -timelimit 120 -

seek truesequential -datapattern random

Benchmarking LDISKFS/ZFS

• You can use a tool like fio to write data to ldiskfs or ZFS to test your
performance tunables

• Run streaming and random reads/writes
• Test metadata performance

§ Can impact the OST metadata lookup

Benchmarking LNET

• Lustre has a built in tool called lnet-selftest that will exercise the

network only (no disk activity)

§ Pick which servers and clients to use

§ Reads/writes

§ Data size

§ Concurrency (simultaneous number of threads participating)

• This will allow you to ensure that the network is performing and

tuned

• Very well documented here:

§ http://wiki.lustre.org/LNET_Selftest

§ We don’t run this frequently, but we reference this documentation when

we do (you don’t have to memorize all this stuff)

§ Rick will be giving an example later

http://wiki.lustre.org/LNET_Selftest

Benchmarking filesystem data layer

• Lustre has a built in tool called obdfilter-survey that will exercise
the disk layer only (no LNET activity)

• This will allow you to ensure the disks are performing and tuned
independent of LNET

• Note: This test can be destructive; run these tests before
production

• More info on Lustre Wiki: http://wiki.lustre.org/OBDFilter_Survey

Benchmarking filesystem data layer
• Example:

§ modprobe obdecho
§ mkdir -p /tmp/obdfilter-survey_output
§ nobjlo=1 nobjhi=16 thrlo=1 thrhi=1024 size=32768

rslt_loc=/tmp/obdfilter-survey_output targets="testfs-OST0000 testfs-
OST0001 testfs-OST0002" case=disk obdfilter-survey

• Tunables:
§ nobj[lo|hi]: concurrent object count per OST to iterate over
§ thr[lo|hi]: Thread range to iterate over
§ size: total amount of data to be written

– Should target something that is >2x larger than WBC size of RAID controller
§ rslt_loc: Where to write the result data to

• You should write a script to coordinate the obdfilter-survey
processes per node if you have a shared RAID sub-system (DDN,
NetApp E-series, etc…)

Filesystem-level benchmarking

Node count:
• “Hero” performance (max performance possible)

§ Usually ~10-30% of total node count at large-scale

§ Node placement may be important (network layout, router layout, etc…)

• Single-client

§ Helps to understand what a small job will see

§ Helps to understand scaling behavior

• All clients (max performance from all clients)

§ Generally ~10-30% slower than “hero” at large-scale

§ Important to understand for full-scale jobs

Thread count:
• Single-threaded

§ Most common use case for users

• Multi-threaded

§ Max possible performance per node

Lustre filesystem metadata benchmarking
• mdtest is a very common tool for exercising filesystem metadata

from multiple clients using MPI
• Considerations:

§ shared directory
§ unique directory
§ just metadata (zero-length files) or file IO too?

• Lots of tunables:
#-n: every task will create/stat/remove # files/dirs per tree
#-N: stride # between neighbor tasks for file/dir stat (local=0)
#-p: pre-iteration delay (in seconds)
#-r: only remove files/dirs
#-R: randomly stat files/dirs (optional seed can be provided)
#-s: stride between the number of tasks for each test
#-S: shared file access (file only, no directories)
#-t: time unique working directory overhead
#-T: only stat files/dirs
#-u: unique working directory for each task
#-v: verbosity (each instance of option increments by one)
#-V: verbosity value
#-w: number of bytes to write to each file
#-y: sync file after write completion
#-z: depth of hierarchical directory structure

#-b: branching factor of hierarchical directory structure
#-B: no barriers between phases (create/stat/remove)
#-c: collective creates: task 0 does all creates and deletes
#-C: only create files/dirs
#-d: the directory in which the tests will run
#-D: perform test on directories only (no files)
#-e: number of bytes to read from each file
#-E: only read files
#-f: first number of tasks on which the test will run
#-F: perform test on files only (no directories)
#-h: prints help message
#-i: number of iterations the test will run
#-I: number of items per tree node
#-l: last number of tasks on which the test will run
#-L: files/dirs created only at leaf level

Lustre filesystem metadata benchmarking

#BSUB -q storage # Job queue
#BSUB -o mdtest_unique_dir_multi-node.o%J # output is sent to file job.output
#BSUB -e mdtest_unique_dir_multi-node.e%J # error is sent to file job.error
#BSUB -J mdtest_unique_dir_multi-node # name of the job
#BSUB -nnodes 630 # Number of nodes to use in the job
#BSUB -W 360 # wallclock -W [hour:]minute[/host_name | /host_model]
#BSUB -U PT
#BSUB -P ACCEPTANCE

MOUNT="alpine"

BINDIR="/gpfs/alpine/stf002/scratch/leverman/alpine_acceptance"
OUTDIR="$BINDIR/${LSB_JOBID}_md_test"
[-e $OUTDIR] || {
mkdir -p $OUTDIR
}
cd $BINDIR
module load gcc
jsrun -n 630 -c ALL_CPUS -a 20 -X 1 $BINDIR/build/mdtest_build/mdtest -n 32768 -p 300 -F -u -C -r -i 3 -v -v -u
$OUTDIR

File creates, metadata only, unique-directory, 3 iterations, 5-minute delay

Lustre filesystem data benchmarking
• IOR is a very common tool for exercising filesystem from multiple clients

using MPI
• Considerations:

– FPP or SSF
– Random vs. Sequential workload (random is more realistic on an aging system)
– picking IO size (alignment with RAID engine or user workload)
– picking the amount of data (want to write for long enough to exceed client, server, and

RAID engine caches
– Don’t let vendors stonewall, pre-create, etc… as part of acceptance

• Lots of tunables:
-n noFill -- no fill in HDF5 file creation
-N N numTasks -- number of tasks that should participate in the test
-o S testFile -- full name for test
-O S string of IOR directives (e.g. -O checkRead=1,lustreStripeCount=32)
-p preallocate -- preallocate file size
-P useSharedFilePointer -- use shared file pointer [not working]
-q quitOnError -- during file error-checking, abort on error
-Q N taskPerNodeOffset for read tests use with -C & -Z options (-C constant N, -Z at least N) [!HDF5]
-r readFile -- read existing file
-R checkRead -- check read after read
-s N segmentCount -- number of segments
-S useStridedDatatype -- put strided access into datatype [not working]
-t N transferSize -- size of transfer in bytes (e.g.: 8, 4k, 2m, 1g)
-T N maxTimeDuration -- max time in minutes to run tests
-u uniqueDir -- use unique directory name for each file-per-process
-U S hintsFileName -- full name for hints file
-v verbose -- output information (repeating flag increases level)
-V useFileView -- use MPI_File_set_view
-w writeFile -- write file
-W checkWrite -- check read after write
-x singleXferAttempt -- do not retry transfer if incomplete
-X N reorderTasksRandomSeed -- random seed for -Z option
-Y fsyncPerWrite -- perform fsync after each POSIX write
-z randomOffset -- access is to random, not sequential, offsets within a file
-Z reorderTasksRandom -- changes task ordering to random ordering for readback

-a S api -- API for I/O [POSIX|MPIIO|HDF5|HDFS|S3|S3_EMC|NCMPI]
-A N refNum -- user reference number to include in long summary
-b N blockSize -- contiguous bytes to write per task (e.g.: 8, 4k, 2m, 1g)
-B useO_DIRECT -- uses O_DIRECT for POSIX, bypassing I/O buffers
-c collective -- collective I/O
-C reorderTasksConstant -- changes task ordering to n+1 ordering for readback
-d N interTestDelay -- delay between reps in seconds
-D N deadlineForStonewalling -- seconds before stopping write or read phase
-e fsync -- perform fsync upon POSIX write close
-E useExistingTestFile -- do not remove test file before write access
-f S scriptFile -- test script name
-F filePerProc -- file-per-process
-g intraTestBarriers -- use barriers between open, write/read, and close
-G N setTimeStampSignature -- set value for time stamp signature
-h showHelp -- displays options and help
-H showHints -- show hints
-i N repetitions -- number of repetitions of test
-I individualDataSets -- datasets not shared by all procs [not working]
-j N outlierThreshold -- warn on outlier N seconds from mean
-J N setAlignment -- HDF5 alignment in bytes (e.g.: 8, 4k, 2m, 1g)
-k keepFile -- don't remove the test file(s) on program exit
-K keepFileWithError -- keep error-filled file(s) after data-checking
-l data packet type-- type of packet that will be created [offset|incompressible|timestamp|o|i|t]
-m multiFile -- use number of reps (-i) for multiple file count
-M N memoryPerNode -- hog memory on the node (e.g.: 2g, 75%)

Lustre filesystem data benchmarking

#!/bin/bash

#BSUB -q storage # Job queue

#BSUB -o IOR_fpp_32MB_seq_alpine.o%J # output is sent to file job.output
#BSUB -e IOR_fpp_32MB_seq_alpine.e%J # error is sent to file job.error

#BSUB -J IOR_fpp_32MB_seq_alpine # name of the job

#BSUB -nnodes 504 # Number of nodes to use in the job
#BSUB -W 240 # wallclock -W [hour:]minute[/host_name | /host_model]

#BSUB -P ACCEPT

#BSUB -alloc_flags "smt4 isolategpfs" # Isolate GPFS processes and configure for SMT4

MOUNT=$(pwd | awk -F/ '{print $3}')

BDIR="/gpfs/alpine/stf002/scratch/leverman/alpine_acceptance"

TDIR="$BDIR/ior_testdir"

ITERS=3
BSIZE="7168g"

INTERFACE="POSIX”

TSIZE="16m"

mkdir -p ${TDIR}

cd ${BDIR}

module load gcc

date

echo "POSIX read/write run for seq file per process 16MB transfer size, 20min"
jsrun -n 504 -c ALL_CPUS -a 1 ${BDIR}/build/ior-3.1.0/src/ior -g -d 360 -o ${TDIR}/POSIX_fpp_ior -F -i ${ITERS} -b ${BSIZE} -t ${TSIZE} -w -r -a ${INTERFACE} -e -v -v

date

exit 0

FPP, read/write, 16MB transfer size

Lustre Tuning (general – ALL)
• Tuning BIOS

§ Disable c-states
§ Put in “performance” mode
§ Performance power governor in OS

• Ko2iblnd (our lustre file systems are all IB attached – that will be the assumption for these slides)
§ options ko2iblnd ib_mtu=2048 timeout=100 credits=2560 ntx=5120 peer_credits=63 concurrent_sends=63 fmr_pool_size=1280

fmr_flush_trigger=1024
• LNET

§ /etc/modprobe.d/lnet.conf
– options lnet check_routers_before_use=1 router_ping_timeout=120 dead_router_check_interval=50 avoid_asym_router_failure=0

live_router_check_interval=50
§ /etc/lnet.conf

– net:
– - net type: o2ib2
– local NI(s):
– - nid:
– interfaces:
– 0: ib1
– tunables:
– peer_timeout: 180
– peer_credits: 63
– peer_buffer_credits: 0
– credits: 2560
– global:
– discovery: 0

§ Peer Credits
– Modern systems you generally set peer credits to 63 (may need to be lower with FDR IB – 8 because of concurrent sends issue)
– Compute vendors may set something specific (need to keep credit the same across all clients and servers)

• Striping (talk about this later)

LNET
LND

IP/IPoIB/RDMA

Lustre Server Tuning
• SRP (for an SFA14KX):

§ /etc/modprobe.d/ib_srp.conf
– options ib_srp cmd_sg_entries=255 indirect_sg_entries=2048 allow_ext_sg=1 use_blk_mq=N

• Block devices (udev rules for an SFA14KX):
§ KERNEL=="sd*", ENV{ID_VENDOR}=="DDN*", ENV{ID_MODEL}=="SFA14KX*", \
§ ATTR{device/timeout}="68", \
§ ATTR{queue/scheduler}="deadline", \
§ ATTR{queue/nr_requests}="192", \
§ ATTR{queue/read_ahead_kb}="0", \
§ ATTR{queue/max_sectors_kb}="$attr{queue/max_hw_sectors_kb}”

§ KERNEL=="dm-*", ACTION=="change", ENV{NCCS_DM_TABLE}=="multipath" \
§ ATTR{queue/scheduler}="deadline", \
§ ATTR{queue/nr_requests="192}", \
§ ATTR{queue/read_ahead_kb}=”0}", \
§ ATTR{queue/max_sectors_kb}=”8192”

• Multipathd (for an SFA14KX):
§ device {
§ vendor "DDN"
§ product "SFA14KX"
§ prio "alua"
§ prio_args "exclusive_pref_bit"
§ path_grouping_policy "group_by_prio"
§ path_checker "tur"
§ path_selector "round-robin 0"
§ rr_weight "uniform"
§ failback "2"
§ no_path_retry "12"
§ user_friendly_names "yes"
§ dev_loss_tmo "10"
§ fast_io_fail_tmo "5"
§ max_sectors_kb "8192"
§ }

• LDISKFS/ZFS tunables:
§ options zfs metaslab_debug_unload=1 zfs_arc_max=150000000000 zfs_vdev_scheduler=deadline zfs_prefetch_disable=1 zfs_dirty_data_max_percent=30

zfs_dirty_data_max_max=60236916326 zfs_dirty_data_max=60236916326 zfs_arc_average_blocksize=2097152 zfs_max_recordsize=2097152 zfs_vdev_aggregation_limit=2097152
zfs_multihost_interval=60000

RAID set block-device

LDISKFS/ZFS
Multipath block-device

RAID subsystem
SRP/iSER/SAS

Lustre Client Tuning
• lctl set_param osc.*.checksums=0

§ You may already have network checksums enabled and don’t need this
§ Performance penalty

• lctl set_param timeout=600
• lctl set_param ldlm_timeout=200
• lctl set_param at_min=250
• lctl set_param at_max=600
• lctl set_param ldlm.namespaces.*.lru_size=128

§ Might be ignored sometimes (current bug LU11518)
§ Low number for computes (generally), high number for login nodes

• lctl set_param osc.*.max_rpcs_in_flight=32
• lctl set_param osc.*.max_dirty_mb=64
• lctl set_param debug="+neterror”

§ Rick will talk more about this later

Lustre Router Tuning

• Check if LNET routing is enabled on this node

§ cat /sys/kernel/debug/lnet/routes

• LNET router buffer sizes

§ Defaults are generally too small

§ Can be changed on the fly

§ How we tune it:

– tiny: 8192

• Zero-payload (signals and acks)

– small: 131072

• 4k payload (metadata, zero-length file, etc…)

– large: 4096

• 1m max payload (file data)

• Different credit sizes per interface?

§ Depends on the networks you are routing between

Performance Monitoring
• Jobstats (job-level)

§ We assume single job per node and tag each
lustre client with a job ID using the scheduler
prologue/epilogue

§ You can gather this data as time-series or just
have a report for what the total IO activity for the
job was using tools like splunk/influx-Grafana

Performance Monitoring
• Darshan (job-level)

§ Load an environment
module

§ Users compile code with
darshan loaded

§ Darshan intercepts I/Os
and gathers statistics

§ Tools exist to visualize data
§ Minimal performance

impact

Performance Monitoring

• Brw_stats (OST/MDT target level)

§ Can use a data collector tool (cerebrod, telegraf, etc…) to collect the

brw_stats data for each OST

§ Put this data into analytics tool (like splunk) to visualize

§ Dumps the following data:

– pages per bulk r/w

– discontiguous pages

– disk I/Os in flight

– I/O time (1/1000s)

– disk I/O size

Performance Monitoring
• LMT – ltop

§ Collects metadata, bandwidth, and
other server-side stats

§ Puts data in a database via data
collection tool (cerebrod)

§ Different interfaces to view the data
(ltop and lwatch)

• Controller-local IO statistics
§ DDN, NetApp, Adaptec, etc… should

present B/W, I/O size, IOPS, latency
etc… for LUNs, PDs, host ports, etc…

Health Monitoring
• At ORNL we use Nagios

§ Provides a dashboard for system health

• Monitoring
§ OK, warning, critical

• Alerting
§ Business hours
§ non-business hours
§ never page

Health Monitoring
• block-device tuning checks

§ Need to make sure that the IO scheduler, nr_requests, timeouts, etc are
tuned correctly.

§ These can be lost after an upgrade.
• Mounted devices check:

§ Make sure that all of your OSTs are
mounted

– sounds ridiculous, but this can happen
at 2AM

• Server health
(memory/processor/fan/power-
supply)
§ Many hardware vendors provides

tools already
– OpenManage (Dell), iLO (HP), etc…
– ipmitool sdr

• Hundreds of sensors available

Health Monitoring

• Critical services monitoring:

§ Want to make sure that services that are required for system operation

are “running”

§ Examples: srp_daemon/opensmd/crond/postfix

§ Simple script that parses `systemctl status <service>` output

• Multipath health

§ Script that parses `multipath –ll`

§ 2 paths: Healthy,

§ 1 path: warning,

§ 0 paths: critical

Health Monitoring
• Host IB health

§ Network link health (lane count and speed)
§ Check for card->PCI bus link health
§ Check counters changes over time

– Symbol errors
– LinkDownedCounter
– VL15 Dropped

Health Monitoring
• Switch-to-switch IB health

§ `ibdiagnet` is insufficient for finding all switch-to-switch IB link issues
– It will help you find unhealthy links
– Links can go dark and will not be detected

§ Down IB links can cause performance issues
– If using AR, they can even make the network re-route which causes unavailability

for a small time
– Non-symmetric routes can cause ~3-5% performance drop

§ Script that knows IB network topology and checks for it to be sane
– Knows that the switch cables are connected to the correct port on the correct

switch
• Impacts network routing

– Knows that the host cables are connected to the correct port on the correct switch
• If improperly cabled can impact FGR

– Check link speed
– Check link width

Health Monitoring

• Lnet_stats

§ Monitor changes in ` lnetctl stats show` to show LNET congestion or errors

§ Set threshold to report on changes in backlogged messages “msg_alloc”

– Example 30000

§ Can set a threshold for downed routes, dropped messages, etc…

• Lustre_health

§ Simple script that checks the status of `lctl get_param -n health_check`

§ Tells you if a OST is mounted read-only, is slow, corrupt, etc…

• Ls timer

§ Inside of each cluster network (if routed), check to make sure that you can

`ls` inside of a lustre directory within a certain timeout

§ Will tell you if lustre is being slow or not

– Helps to get in front of users complaining

Open Scalable File Systems, Inc.
3855 SW 153rd Drive Beaverton, OR 97006

Ph: 503-619-0561 | Fax: 503-644-6708
admin@opensfs.org | www.opensfs.org

15-minute break

Copyright © 2013 OpenSFS.

When Things Go Wrong

• Lustre Recovery
• Gathering debug information
• Network debugging
• Repairing file system issues

Lustre Recovery

• Lustre’s recovery mechanism is designed to deal with
node/network failures and keep the file system running in a
consistent state

• Some of the failures it is designed to handle are:
1. Client failure
2. MDT failure
3. OST failure

• MDS and OSS failures require methods to recover or replay
outstanding I/O requests from clients

Client Failure - Detection

• It is important to detect client failure early so that remaining

clients can continue accessing the file system

• Two main ways to detect client failure:

1. Client fails to respond to a blocking lock callback from the

Distributed Lock Manager (DLM)

2. Client fails to “ping” server in a long period of time

• These conditions may occur even if the hardware itself has

not actually failed (e.g. – network link failure), but it is still

treated the same

Client Failure - Recovery

• When a client failure is detected, Lustre tries to ensure that
other clients can continue working
§ Can’t afford to have one or more clients waiting to perform I/O while

they are trying to acquire a lock held by a dead client

• When a client is evicted:
§ All client locks are invalidated
§ All cached inodes on client are invalidated
§ All cached data on client is flushed

• When client recovers, it may reconnect to the file system and
continue operations

MDT Failure - Detection

• Clients may detect MDT failure by timeouts of in-flight requests
or from Imperative Recovery
§ Client MDC will attempt to connect to failover node if configured
§ Only clients connected during the failure are permitted to reconnect

during the recovery window

• Client state will need to be communicated to MDT once
connection is reestablished

MDT Failure - Recovery

• Lustre uses the Metadata Replay protocol to ensure that MDS
can re-acquire necessary state information from client
transactions that have not been committed to disk

• The protocol uses transaction numbers to ensure operations
are replayed in the correct order

• Clients also communicate existing lock state to MDS

OST Failure - Detection

• If an OST fails to respond to a client in a timely manner, the
corresponding OSC on the client will treat the OST as having
failed
§ Outstanding I/O requests will block until the OST has recovered
§ OSC will try to reconnect to OST through a failover OSS node (if one

has been configured)

• Same logic applies if the “client” is the MDS
§ MDS will note that OST is unavailable and skip it when assigning

objects to new files

OST Failure - Recovery

• OSC-to-OST recovery protocol is the same as the MDC-to-MDT
Metadata Replay protocol
§ Bulk writes usually have been committed to disk so server just needs

to reconstruct the reply
§ For other cases, normal replay/resend handling is done
§ Client still has copy of data until it receives acknowledgement

• When OST is in recovery mode, all new client connections are
refused until the recovery finishes
§ Recovery finishes when all previously-connected clients have

replayed transactions, or a client times out

Metadata Replay Protocol

• Every client request contains a unique, monotonically
increasing XID to track order of requests

• Each request processed by server is assigned a unique,
increasing Transaction Number (TN)
§ Reply to client’s request contains TN for the request along with the

last committed TN
• Server maintains last_rcvd file with list of connected clients
• During recovery

§ Request with only XID à resend
§ Request with TN à replay

Viewing Recovery Status

• To view recovery status of all OSTs
lctl get_param obdfilter.*.recovery_status

• To view recovery status of MDTs

lctl get_param mdt.*.recovery_status

• Example output:
status: COMPLETE
recovery_start: 1553204504

recovery_duration: 0

completed_clients: 1/1

replayed_requests: 0

last_transno: 94574301709

Aborting Recovery

• In some cases, it may be known that recovery will not complete
properly, or perhaps recovery is not really necessary
§ Previously connected client may currently be down
§ File system was brought down cleanly, but there was an idle client

connected at the time
• Recovery can be aborted in two ways:

mount -t lustre -o abort_recov <dev> <mnt_point>

lctl --device <dev_num> abort_recovery

Gathering Debug Information

• When something goes wrong with Lustre, there are several
ways to grab useful information

• Some of these methods are useful for sys admins, and others
are primarily of use to developers

• Sources of debug information include:
§ Syslog / dmesg
§ Lustre internal debug logs
§ Crash dumps
§ Debugfs
§ Wireshark

Syslog / dmesg

• Things to look for in log messages:

§ Lustre / LustreError / Lnet / LBUG

§ rc -30 (EROFS)

§ Timeouts / evictions

§ Messages that contain NIDs (10.1.2.3@o2ib, etc.)

• It’s impossible to enumerate all the Lustre errors you might

see, so let Google be your friend

• Sometimes general pattern of messages can be just as useful

(or perhaps more useful) than the content of the messages

mailto:10.1.2.3@o2ib

Lustre Internal Debug Log

• Lustre maintains an internal circular debug buffer
• A debug mask is used to control what info gets logged

§ Query using “lctl get_param debug”
§ Set using “lctl set_param debug=<mask>”
§ Can also be set using “sysctl lnet.debug”

• Size of the buffer can be modified using
lctl set_param debug_mb=<size>

• Contents of buffer can be dumped to a file using
lctl debug_kernel <filename>

• See Lustre manual for info about debug mask options

Crash Dumps

• Use kdump (via kexec) to capture kernel info when LBUG is

encountered

1. Set kernel to panic on LBUG

lctl set_param panic_on_lbug=1

2. Install kexec-tools package

3. Add the following parameter to the kernel boot options:

crashkernel=<size> (or “auto”)

4. Modify /etc/kdump.conf if desired

– For example, send crash dumps over the network to another host

5. Start the kdump service

systemctl start kdump

• Use a program like crash to analyze output

debugfs

• When using ldiskfs for backend Lustre storage, you can inspect
the contents of the file system in two ways:
1. Mount the device with “-t ldiskfs” instead of “-t lustre”
2. Use the debugfs command

• One benefit of using debugfs is that you can view the contents
while Lustre is up and running
§ In that case, it is best to use “debugfs -c” so that the device is

opened in read-only mode

• Even if there are no problems, spending some time looking at
the file layout can provide some insight into how Lustre works

Network Debugging

• Many Lustre issues can ultimately be traced back to network
connectivity problems
§ Disruption of client-server communication leads to timeouts or

dropped requests
§ Clients see this as a server failure
§ Servers see it as a client failure and evict clients

• Error messages might not make the issue obvious
§ Client syslog message may complain about being unable to process

config from MDS, but the real reason is that it can’t even contact the
MDS

§ Sporadic network problems make debugging even harder

Initial Troubleshooting

• Is the firewall enabled?
• Does every node have the proper NID configured on the

correct interface?
• If LNet routing is used, does the client and server have the

correct routes?
• Do any nodes have duplicate IP addresses?
• Can you ping between nodes? Both ways?
• Can you lctl ping between nodes? Both ways?
• Do the servers have MDTs/OSTs mounted?

Infiniband Issues

• Debugging Infiniband issues can get complex, but there are
some simple steps that often lead to results
§ Is IPoIB configured?
§ Is the installed version of Lustre built against the correct IB stack (in-

kernel vs. MOFED, version, etc.)?
§ Is the IB firmware too old? Too new?
§ Do IB bandwidth tests give expected results?
§ Do IB HBA counters show any errors? What about counters on the IB

switch?
§ Does output from ibnetdiscover, ibstat, etc. match what you expect?

Lnet selftest

• Lnet selftest is a useful tool for testing connectivity and
measuring network performance

• Can be used to test pairs of nodes or entire clusters
• To run Lnet selftest:

§ Load lnet_selftest kernel module on all nodes

§ Use lst command to add groups of clients and servers

§ Use lst command to specify type of test to run

§ Initiate test from any host on the fabric

Example: Lnet selftest

export LST_SESSION=$$
echo LST_SESSION=$LST_SESSION

lst new_session io_test
lst add_group clients 10.10.20.31@o2ib0
lst add_group servers 10.10.1.7@o2ib0 10.10.1.8@o2ib0
lst add_batch bulk
lst add_test --batch bulk --concurrency=8 --distribute 1:2 --from clients \

--to servers brw write size=1M
lst run bulk
lst stat servers & sleep 30; kill $!
lst end_session

Repairing File System Issues

• Sometimes file system data structures can get into an
inconsistent state

• Causes can include:
§ Power failures
§ Hardware failures
§ Software bugs

• Inconsistency could be with Lustre’s internal data or with the
data structures of the backend ldiskfs/zfs file systems used on
the MDTs/OSTs

• Each layer has its own tools to deal with the problem

LFSCK (Lustre File System Checker)

• Lustre provides a tool for checking the consistency of its

internal state and repairing any problems

• Prior to Lustre 2.3, performing a full file system check was

slooooooow and painful

§ Had to take Lustre offline to generate the needed databases of inode

information

§ Best bet was just to run e2fsck on underlying ldiskfs file system and

hope it fixed enough of the problems

• LFSCK has been re-engineered to run with the file system

online (and in use)

MDT Object_A

File Identifiers and Objects

Object Index (OI)

OST Object_B

LMA = FID_A
LINK = Parent_FID/name
LOV = (ost_idx, FID_B)…

FID_A à Object_A

LMA = FID_B
PFID = FID_A

Object Index (OI)
FID_B à Object _B

LFSCK (Phase 1)

• Maintain consistency of Object Index on MDT

• Iterate through all objects on the OSD
§ Make sure inode number in OI matches with FID from inode’s LMA

xattr

• Can be triggered manually or automatically

• Maintains checkpoint file (scrub_status) on MDT
§ Allows restart if scan is interrupted

§ Contains stats about current scan

• Supports rate limiting

LFSCK (Phase 1.5)

• Maintain consistency between the FID-in-Dirent info and

LMA/LINK xattrs in objects

• Iterate through each object on OSD

• If it is a directory, check each file entry

§ Compare FID listed in dirent with LMA xattr of inode

§ Compare file name from dirent with name from inode’s LINK xattr

§ Compare FID from LINK xattr with FID of parent directory

• Supports checkpoint restart (lfsck_namespace) and rate

limiting

• This check is not automatically triggered

LFSCK (Phase 2)

• MDT-OST consistency checking

• MDT object for a file contains list of child OST objects

• Child OST object contains FID for parent MDT object

• Check 4 different cases:

§ Dangling reference – mdt_obj1 points to ost_obj1, but ost_obj1

doesn’t exist or doesn’t have PFID xattr

§ Mismatched reference – mdt_obj1 points to ost_obj1, but ost_obj1

points to mdt_obj2. mdt_obj2 doesn’t exist or recognize ost_obj1 as

child.

§ Multiple references – mdt_obj1 and mdt_obj2 both point to ost_obj1

§ Unreferenced object - ost_obj1 points to mdt_obj1, but mdt_obj1

doesn’t exist or recognize ost_obj1 as child. No other mdt_obj points

to ost_obj1.

LFSCK (Phase 2)

• Fixes ownership inconsistency between MDT and OST objects
(MDT ownership takes precedence)

• Will track errors, and if threshold is reached, will trigger full
lfsck for file system

• Supports checkpoint restart and rate limiting

LFSCK (Phase 3)

• Implements MDT-MDT consistency check for DNE

• Similar to MDT-OST consistency check in many ways, but also
more complicated

• Too many cases to list here
§ Check http://wiki.lustre.org for design docs

• Supports checkpoint restart and rate limiting

http://wiki.lustre.org/

Running LFSCK

• Full file system check is initiated via
lctl lfsck_start –M ${MDT0} –A –t all -r

• The -t option is used to specify which checks to run
§ scrub – Run OI scrub
§ namespace – FID-in-Dirent, LinkEA consistency
§ layout – MDT-OST object consistency

• Other useful options
§ -n | --dryrun
§ -c | --create_ostobj
§ -C | --create_mdtobj
§ -o | --orphan

Example: Running LFSCK

[root@haven-mds1 ~]# lctl lfsck_start -M haven-MDT0000 -A -t all –r

[root@haven-mds1 ~]# lctl lfsck_query -M haven-MDT0000
layout_mdts_init: 0
layout_mdts_scanning-phase1: 1
layout_mdts_scanning-phase2: 0
…
layout_osts_scanning-phase1: 30
layout_osts_scanning-phase2: 12
…
namespace_mdts_init: 0
namespace_mdts_scanning-phase1: 1
namespace_mdts_scanning-phase2: 0

Repairing ldiskfs corruption

• Since ldiskfs is based on ext4, journaling helps keep the file
system in a consistent state

• If a problem occurs that cannot be fixed by the journal, it will
be necessary to run e2fsck
§ One possible symptom of this is when the logs contain “-30” (EROFS)

errors

§ Only need to run e2fsck on the device(s) that contain errors

• General procedure:
1. Replay journal

2. Run e2fsck in non-fixing mode

3. Run e2fsck to fix problems

Example: Running e2fsck

NOTE: Always use latest e2fsprogs from Whamcloud
https://downloads.whamcloud.com/public/e2fsprogs/latest/

Unmount affected device
root# umount /mnt/ost

If possible, use logger to capture output
root# script /tmp/e2fsck.sda

Replay journal
root# mount -t ldiskfs /dev/sda /mnt/ost
root# umount /mnt/ost

Example: Running e2fsck (cont.)

Run e2fsck in non-fixing mode
root# e2fsck -fn /dev/sda
…[output]…

Fix the errors
root# e2fsck -fp /dev/sda
…[output]…

• Might need to follow-up with LFSCK if there are lots of
problems

ZFS maintenance

• ZFS handles consistency issues differently from ldiskfs
• Admins should periodically scrub zpools

§ Can be done while zpool is online and Lustre is running
§ Causes I/O to disk which could have some affect on the file system
§ Recommended interval = 1 month (?)

• Example:
zpool scrub <pool_name>

• Can reduce impact from scrub by adjusting sysctl parameter
vfs.zfs.scrub_delay

Other Useful Admin Info

• Striping Considerations
• OST allocation (Round-robin vs. Weighted)
• Advanced file layouts

§ Progressive File Layout (PFL)
§ Data on MDT (DoM)

Striping Considerations

• Basic file striping is pretty straightforward
§ Most of the time, just choose a stripe count
§ Sometimes you might adjust the stripe size
§ Other options probably used even less

• For user, striping is usually about performance
Knowledge of application IO pattern

ê

Customized striping parameters
ê

Less contention, better IO performance
• But admins have additional concerns…

Default stripe count

• Choosing the default stripe count for a file system can be a
tricky proposition
§ Too low à Fill up OSTs with large files
§ Too high à Consume more inodes on OSTs than needed
§ Progressive File Layouts can help with this

• Choice of default stripe count might also affect how you
choose to format the MDTs/OSTs

• In any case, it’s a good idea to have some general guidelines for
users
§ Ex – At least 1 stripe for every 100 GB of file space

Improperly striped files

• Whatever striping guidelines you choose, users still won’t
listen…

• May need to track down large files with small stripe counts
that are filling up OSTs

• Options:
1. lfs find (could take a while)
2. Robinhood (if you already have this tool)
3. OST usage distribution (quick, but limited)

• The last option is handy, but sometimes requires a little work

Searching for Improperly Striped Files

• Look at distribution of OST usage

§ Run “lfs df <filesystem>| sort -nk 5”

§ Look for anomalies at the tail end

• Find the user(s) with the most usage on OST

§ Run “lfs quota -I <ost_idx> -u <user> <filesystem>” command for each

user

§ Look for one or more users with abnormally high usage

§ These are your initial candidates for investigation

• Try to locate the offending files

Example

haven-OST000e_UUID x x x 40% /lustre/haven[OST:14]
haven-OST001a_UUID x x x 41% /lustre/haven[OST:26]
haven-OST0017_UUID x x x 41% /lustre/haven[OST:23]
…<snip>…
haven-OST0019_UUID x x x 51% /lustre/haven[OST:25]
haven-OST0005_UUID x x x 52% /lustre/haven[OST:5]
haven-OST0008_UUID x x x 52% /lustre/haven[OST:8]
haven-OST0013_UUID x x x 53% /lustre/haven[OST:19]
haven-OST001b_UUID x x x 65% /lustre/haven[OST:27]
filesystem summary: x x x 46% /lustre/haven

Inode Calculations

• Default stripe count and average file size are important factors

for planning a new file system

§ These factors help determine the number of inodes needed on

MDTs/OSTs which in turn can affect formatting options and device

size requirements

• Number of MDT inodes:

§ num_osts * ost_size / avg_file_size

§ Recommend doubling this to allow for future expansion or smaller

than expected file size

• Number of OST inodes:

§ num_mds_inodes * default_stripe_count / num_osts

§ Recommend 2x-4x padding

Inode Calculations (cont.)

• ZFS has variable number of inodes
§ MDT still needs enough space to allow about 4KB per inode

• ldiskfs creates fixed number of inodes during format
• Defaults for Lustre 2.10:

§ inode size = 1KB
§ MDT will have 1 inode for every 2.5KB
§ OST will have 1 inode for every 1MB (if OST size > 8TB)

• Can alter inode ratios by adding option to mkfs.lustre:

--makefsoptions=“-i <bytes-per-inode>”

• Adjust this option to get desired number of inodes

Inode Disparity

• Primary goal of these calculations is to have parity among MDT
and OST inode counts
§ Ideally, inode and space usage track each other

• Disparity can show up in non-obvious ways
lfs df -i /lfs01

UUID Inodes IUsed Ifree IUse% Mounted on

MDT0000 2402287616 46560885 2355726731 2% /share/lfs01[MDT:0]

OST0001 24117248 22883788 1233460 95% /share/lfs01[OST:1]

OST0003 24117248 22903308 1213940 95% /share/lfs01[OST:3]

OST0004 24117248 22895442 1221806 95% /share/lfs01[OST:4]

OST0006 24117248 22890201 1227047 95% /share/lfs01[OST:6]

summary: 51457138 46560885 4896253 90% /share/lfs01

OST Object Allocation

• When a new file is created, Lustre allocates objects on
OSTs according to desired stripe count

-bash-4.2$ lfs getstripe testfile
testfile
lmm_stripe_count: 4
lmm_stripe_size: 1048576
lmm_pattern: 1
lmm_layout_gen: 0
lmm_stripe_offset: 8

obdid objid objid group
8 231338244 0xdc9f104 0
39 20273590 0x13559b6 0
30 20441490 0x137e992 0
38 20549867 0x13990eb 0

OST Allocators

• How does Lustre decide which OSTs to assign to a file?
• Two different allocators

§ Round-robin
§ Weighted

• Choice based on how “balanced” usage is (as defined by the
target window)

Max OST Free Space Min OST Free Space

Window
(as % of max free)

Round-Robin Allocator

• Round-robin allocator is used if the OST usage is balanced (i.e.
– all OST free space falls within target window)

• OSTs are assigned sequentially from an internal list
• List is not necessarily sequential with regards to OST index

§ Accounts for things like OSTs being on different nodes

OSS 1 OSS 2
OST 1 OST 2 OST 3 OST 4

OST 1 OST 3 OST 2 OST 4List =

Weighted Allocator

• Weighted allocator is used when OST usage is not balanced
• OSTs are assigned a weight based on the amount of free space

and their location
§ Emptier OSTs have a higher weight and are more likely to be selected

• Algorithm makes random selection based on weights
§ Even OSTs with the least free space still have some chance of being

selected
• The goal is to divert more I/O to OSTs with the most free space

while still utilizing other OSTs to some extent

Adjusting Allocator

• Admins have some control over which allocator is used and
how the Weighted allocator assigns weights

• Control size of window used to determine if OST usage is
balanced
§ /proc/fs/lustre/lov/<name>-MDT0000-mdtlov/qos_threshold_rr
§ Default value is 17%
§ If set to 100%, round-robin is always used

• Control how much weight is affected by free space
§ /proc/fs/lustre/lov/<name>-MDT0000-mdtlov/qos_prio_free
§ Default value is 91%
§ If set to 100%, weights are based solely on free space

Advanced File Layouts

• Recent versions of Lustre have added some features that
provide more options beyond current basic layout

1. Progressive File Layout
§ Provides ability to adjust file layout as the size of the file grows.
§ Essentially creates different basic layouts for different sections of a

file

2. Data on MDT
§ Store some (or possibly all) file contents on the MDT itself

Progressive File Layout (PFL)

• Introduced in Lustre 2.10
• A PFL file is essentially an array of basic layouts (components)

that cover different non-overlapping sections of a file

…..

1 stripe 4 stripes 32 stripes

[0,2MB) [2MB,256MB) [256MB,EOF)

PFL Benefits

• Fine-grain control of layout could provide performance
improvements

• File layout can be adapted on-the-fly
§ Only need to define initial component
§ Add components when needed
§ Don’t use more OST inodes than necessary

• Choose a default PFL for all users that gradually increases stripe
count as the file size increases
§ No more full OSTs! (maybe…)

• Underlying composite layout structure forms basis for other
layout options

PFL Examples

Create PFL for previous figure
lfs setstripe -E 2M -c 1 -E 256M -c 4 -E -1 -c 32 <file>

Create starting layout, then add component
lfs setstripe -E 2M -c 1 -E 256M -c 4 <file>
lfs setstripe --component-add -E -1 -c 32 <file>

Display all components of file
lfs getstripe <file>

NOTE: Will only see OST
objects for instantiated
components

Data on MDT (DoM)

• Introduced in Lustre 2.11
• Designed to improve file I/O by placing small files (or the first

part of a larger file) directly on MDT
§ Helps eliminate extra RPCs to OSTs
§ Advantageous if MDT storage is faster than OST storage

• This is a special case of PFL in which the first component has a
single stripe that resides on the MDT

• Example:

lfs setstripe -E 1M -L mdt -E 256M -c 4 -E EOF -c 10 <file>

DoM Settings

• Some care must be taken when allowing users to place data

directly on the MDT

• Admins can limit the size of the file’s first stripe that resides on

the MDT

• Controlled via dom_stripesize parameter (default=1MB,

disabled=0):

Query value

lctl get_param lod.*MDT0000*.dom_stripesize

Set value temporarily

lctl set_param lod.*MDT0000*.dom_stripesize=<value>

Set value permanently

lctl conf_param <fsname>-MDT0000.lod.dom_stripesize=<value>

Panel Session

Open Scalable File Systems, Inc.
3855 SW 153rd Drive Beaverton, OR 97006

Ph: 503-619-0561 | Fax: 503-644-6708
admin@opensfs.org | www.opensfs.org

Questions?

Copyright © 2013 OpenSFS.

