Lustre System Administration Tutorial

Dustin Leverman Rick Mohr

HPC Storage Engineer HPC Storage Engineer
Oak Ridge National Laboratory University of Tennessee

Outline

1:00PM - Configuration/Tuning: (Dustin - 30 min)
* General benchmarking

* Router/client/server tuning

1:30PM - Monitoring/Metrics: (Dustin - 1 hour)

* Performance monitoring

* Health monitoring

2:30PM - 15 minute break

2:45PM - When Things Go Wrong: (Rick - 1 hour)
* Lustre recovery

 Gathering debug data: kdump, Ictl dk

* Network debugging

e Repairing filesystem issues

3:45PM - Other Useful Admin Info: (Rick - 30 min)

* Striping

* How RR and QOS allocator work
* Layouts

* PFL

* DoM

4:15PM - 45 minute panel session

Benchmarking

* Keep vendors accountable for requirements and system
acceptance

* Establishing a performance baseline helps to detect performance
issues later on.

* Benchmark at the different system layers:

= Block-device/multipath-device (XDD/sgp dd)
— ZFS dRAID exception
= | DISKFS/ZFS (fio)

= LNET (Inet-selftest)

. . LNET Filesystem
* Filesystem data (obdfilter-survey) OST MDT
= Filesystem metadata (mdtest) I\ngllgsagpb?l)%ﬂ:jdeev\i/écee
" Filesystem data and metadata (IOR)

 There are many tools that can be used, these are just examples

Benchmarking block/multipath device

Tuning can be different for block and multipath devices. Need to
check both.

Testing /dev/sd vs. /dev/sg can tell you how caching is impacting
performance.

* Need to understand connectivity to RAID system if IB/SAS/FC attached so
you don’t stress out the same LUN more than once

XDD or sgp _dd are good tools to use

XDD example:

= /opt/xdd/bin/xdd.linux -rwratio 100 -targets 10
/dev/sg{0,2,4,6,8,30,32,34,36,38} -sgio -reqgsize 1 -numreqgs 10000000 -
blocksize 1048576 -verbose -passes 3 -queuedepth 16 -timelimit 120 -
seek truesequential -datapattern random

Benchmarking LDISKFS/ZFS

* You can use a tool like fio to write data to ldiskfs or ZFS to test your
performance tunables

* Run streaming and random reads/writes

* Test metadata performance
= Can impact the OST metadata lookup

Benchmarking LNET

* Lustre has a built in tool called Inet-selftest that will exercise the

network only (no disk activity)

= Pick which servers and clients to use

= Reads/writes

= Data size

* Concurrency (simultaneous number of threads participating)

* This will allow you to ensure that the network is performing and

tuned

* Very well documented here:

= http://wiki.lustre.org/LNET Selftest

= We don’t run this frequently, but we reference this documentation when
we do (you don’t have to memorize all this stuff)

= Rick will be giving an example later

http://wiki.lustre.org/LNET_Selftest

Benchmarking filesystem data layer

Lustre has a built in tool called obdfilter-survey that will exercise
the disk layer only (no LNET activity)

This will allow you to ensure the disks are performing and tuned
independent of LNET

Note: This test can be destructive; run these tests before
production

More info on Lustre Wiki: http://wiki.lustre.org/OBDFilter Survey

Benchmarking filesystem data layer

* Example:
" modprobe obdecho
= mkdir -p /tmp/obdfilter-survey_output

" nobjlo=1 nobjhi=16 thrlo=1 thrhi=1024 size=32768
rslt_loc=/tmp/obdfilter-survey output targets="testfs-OST0000 testfs-
OSTO001 testfs-OSTO002" case=disk obdfilter-survey

e Tunables:

" nobj[lo]|hi]: concurrent object count per OST to iterate over
* thr[lo|hi]: Thread range to iterate over

" size: total amount of data to be written
— Should target something that is >2x larger than WBC size of RAID controller

" rslt_loc: Where to write the result data to

* You should write a script to coordinate the obdfilter-survey

processes per node if you have a shared RAID sub-system (DDN,
NetApp E-series, etc...)

Filesystem-level benchmarking

Node count:

 “Hero” performance (max performance possible)

= Usually ~10-30% of total node count at large-scale

= Node placement may be important (network layout, router layout, etc...)
* Single-client

= Helps to understand what a small job will see

= Helps to understand scaling behavior

* All clients (max performance from all clients)
= Generally ¥10-30% slower than “hero” at large-scale
" |mportant to understand for full-scale jobs

Thread count:
* Single-threaded

= Most common use case for users

* Multi-threaded
= Max possible performance per node

Lustre filesystem metadata benchmarking

* mdtest is a very common tool for exercising filesystem metadata
from multiple clients using MPI
* Considerations:

* shared directory
" unique directory
" just metadata (zero-length files) or file 10 too?

e Lots of tunables:

#-b: branching factor of hierarchical directory structure #-n: every task will create/stat/remove # files/dirs per tree
#-B: no barriers between phases (create/stat/remove) #-N: stride # between neighbor tasks for file/dir stat (local=0)
#-c: collective creates: task 0 does all creates and deletes #-p: pre-iteration delay (in seconds)

#-C: only create files/dirs #-r: only remove files/dirs

#-d: the directory in which the tests will run #-R: randomly stat files/dirs (optional seed can be provided)
#-D: perform test on directories only (no files) #-s: stride between the number of tasks for each test

#-e: number of bytes to read from each file #-S: shared file access (file only, no directories)

#-E: only read files #-t: time unique working directory overhead

#-f. first number of tasks on which the test will run #-T: only stat files/dirs

#-F: perform test on files only (no directories) #-u: unique working directory for each task

#-h: prints help message #-v: verbosity (each instance of option increments by one)
#-i: number of iterations the test will run #-V: verbosity value

#-l1: number of items per tree node #-w: number of bytes to write to each file

#-I: last number of tasks on which the test will run #-y: sync file after write completion

#-L:files/dirs created only at leaf level #-z: depth of hierarchical directory structure

Lustre filesystem metadata benchmarking

File creates, metadata only, unique-directory, 3 iterations, 5S-minute delay

#BSUB -q storage # Job queue
#BSUB -o mdtest_unique_dir_multi-node.o%J # output is sent to file job.output
#BSUB -e mdtest_unique_dir_multi-node.e%J) # error is sent to file job.error

#BSUB -J mdtest_unique_dir_multi-node # name of the job

#BSUB -nnodes 630 # Number of nodes to use in the job

#BSUB -W 360 # wallclock -W [hour:]minute[/host_name | /host_model]
#BSUB -U PT

#BSUB -P ACCEPTANCE
MOUNT="alpine"

BINDIR="/gpfs/alpine/stf002/scratch/leverman/alpine_acceptance"
OUTDIR="$BINDIR/${LSB_JOBID} md_test"

[-e SOUTDIR] || {

mkdir -p SOUTDIR

}

cd SBINDIR

module load gcc

jsrun -n 630 -c ALL_CPUS -a 20 -X 1 SBINDIR/build/mdtest_build/mdtest -n 32768 -p 300 -F -u-C-r-i 3 -v-v -u
SOUTDIR

Lustre filesystem data benchmarking

* |OR is a very common tool for exercising filesystem from multiple clients

using MPI

e Considerations:
— FPP or SSF

— Random vs. Sequential workload (random is more realistic on an aging system)
— picking 10 size (alignment with RAID engine or user workload)
— picking the amount of data (want to write for long enough to exceed client, server, and

RAID engine caches

— Don’t let vendors stonewall, pre-create, etc... as part of acceptance

e Lots of tunables:

-aS api-- APIfor I/O [POSIX|MPIIO|HDF5|HDFS|S3|S3_EMC|NCMPI]

-A N refNum -- user reference number to include in long summary

-b N blockSize -- contiguous bytes to write per task (e.g.: 8, 4k, 2m, 1g)

-B useO_DIRECT -- uses O_DIRECT for POSIX, bypassing 1/0 buffers

-c collective -- collective I/O

-C reorderTasksConstant -- changes task ordering to n+1 ordering for readback
-d N interTestDelay -- delay between reps in seconds

-D N deadlineForStonewalling -- seconds before stopping write or read phase
-e fsync-- perform fsync upon POSIX write close

-E useExistingTestFile -- do not remove test file before write access

-fS scriptFile -- test script name

-F filePerProc -- file-per-process

-g intraTestBarriers -- use barriers between open, write/read, and close

-G N setTimeStampSignature -- set value for time stamp signature

-h showHelp -- displays options and help

-H showHints -- show hints

-i N repetitions -- number of repetitions of test

-l individualDataSets -- datasets not shared by all procs [not working]

-j N outlierThreshold -- warn on outlier N seconds from mean

-J N setAlignment -- HDF5 alignment in bytes (e.g.: 8, 4k, 2m, 1g)

-k keepFile -- don't remove the test file(s) on program exit

-K keepFileWithError -- keep error-filled file(s) after data-checking

-I data packet type-- type of packet that will be created [offset|incompressible |[timestamp]|o]i|t]
-m multiFile -- use number of reps (-i) for multiple file count

-M N memoryPerNode -- hog memory on the node (e.g.: 2g, 75%)

-n noFill -- no fill in HDFS5 file creation

-N' N numTasks -- number of tasks that should participate in the test

-0 S testFile -- full name for test

-0 S string of IOR directives (e.g. -O checkRead=1,lustreStripeCount=32)

-p preallocate -- preallocate file size

-P useSharedFilePointer -- use shared file pointer [not working]

-q quitOnError -- during file error-checking, abort on error

-Q N taskPerNodeOffset for read tests use with -C & -Z options (-C constant N, -Z at least N) [!HDF5]
-r readFile -- read existing file

-R checkRead -- check read after read

-s N segmentCount -- number of segments

-S useStridedDatatype -- put strided access into datatype [not working]

-t N transferSize -- size of transfer in bytes (e.g.: 8, 4k, 2m, 1g)

-T N maxTimeDuration -- max time in minutes to run tests

-u uniqueDir -- use unique directory name for each file-per-process

-U S hintsFileName -- full name for hints file

-v verbose -- output information (repeating flag increases level)

-V useFileView -- use MPI_File_set_view

-w writeFile -- write file

-W checkWrite -- check read after write

-x singleXferAttempt -- do not retry transfer if incomplete

-X N reorderTasksRandomSeed -- random seed for -Z option

-Y fsyncPerWrite -- perform fsync after each POSIX write

-z randomOffset -- access is to random, not sequential, offsets within a file
-Z reorderTasksRandom -- changes task ordering to random ordering for readback

Lustre filesystem data benchmarking

FPP, read/write, | 6MB transfer size

#!/bin/bash

#BSUB -q storage # Job queue

#BSUB -0 IOR_fpp_32MB_seq_alpine.o%J) # output is sent to file job.output

#BSUB -e IOR_fpp_32MB_seq_alpine.e%) # error is sent to file job.error

#BSUB -J IOR_fpp_32MB_seq_alpine # name of the job

#BSUB -nnodes 504 # Number of nodes to use in the job

#BSUB -W 240 # wallclock -W [hour:]Jminute[/host_name | /host_model]
#BSUB -P ACCEPT

#BSUB -alloc_flags "smt4 isolategpfs" # Isolate GPFS processes and configure for SMT4

MOUNT=$(pwd | awk -F/ '{print $3}')
BDIR="/gpfs/alpine/stf002/scratch/leverman/alpine_acceptance"
TDIR="SBDIR/ior_testdir"

ITERS=3

BSIZE="7168g"

INTERFACE="POSIX”

TSIZE="16m"

mkdir -p S{TDIR}
cd ${BDIR}
module load gcc

date

echo "POSIX read/write run for seq file per process 16 MB transfer size, 20min"

jsrun -n 504 -c ALL_CPUS -a 1 ${BDIR}/build/ior-3.1.0/src/ior -g -d 360 -0 S{TDIR}/POSIX_fpp_ior -F -i S{ITERS} -b S{BSIZE} -t S{TSIZE} -w -r -a S{INTERFACE} -e -v -v
date

exit 0

Lustre Tuning (general — ALL)

Tuning BIOS
= Disable c-states
= Putin “performance” mode
= Performance power governor in OS

Ko2iblnd (our lustre file systems are all IB attached — that will be the assumption for these slides)

= options ko2ibIind ib_mtu=2048 timeout=100 credits=2560 ntx=5120 peer_credits=63 concurrent_sends=63 fmr_pool_size=1280
fmr_flush_trigger=1024

LNET

= /etc/modprobe.d/Inet.conf

— options Inet check_routers_before_use=1 router_ping_timeout=120 dead_router_check_interval=50 avoid_asym_router_failure=0
live_router_check_interval=50

= Jetc/Inet.conf
— net:
- net type: 02ib2
local Ni(s):

- - nid: LN ET

- interfaces:

- 0:ib1l LND
~ tunables: IP/IPoIB/RDMA

- peer_timeout: 180
- peer_credits: 63
- peer_buffer_credits: 0
- credits: 2560
global:
- discovery: 0
= Peer Credits
— Modern systems you generally set peer credits to 63 (may need to be lower with FDR IB — 8 because of concurrent sends issue)
— Compute vendors may set something specific (need to keep credit the same across all clients and servers)

Striping (talk about this later)

Lustre Server Tuning

SRP (for an SFA14KX):

= /etc/modprobe.d/ib_srp.conf
— options ib_srp cmd_sg_entries=255 indirect_sg_entries=2048 allow_ext_sg=1 use_blk_mqg=N

Block devices (udev rules for an SFA14KX):
= KERNEL=="sd*", ENV{ID_VENDOR}=="DDN*", ENV{ID_MODEL}=="SFA14KX*", \

= ATTR{device/timeout}="68", \

= ATTR{queue/scheduler}="deadline", \

= ATTR{queue/nr_requests}="192", \

= ATTR{queue/read_ahead_kb}="0", \

= ATTR{queue/max_sectors_kb}="Sattr{queue/max_hw_sectors_kb}”

KERNEL=="dm-*", ACTION=="change", ENV{NCCS_DM_TABLE}=="multipath" \
ATTR{queue/scheduler}="deadline", \
ATTR{queue/nr_requests="192}", \

ATTR{ /read_ahead_kb}="0}", \
= ATTR{gE:E:/:s:x_:ecigrs_kb}:”8192” LDISKFS/Z FS
e ALY
. device Multipath block de\(lce

. vendor "DDN"

.. .. RAID set block-device
= product SFA14KX -

" pr?o "alua" | o SRP/'SER/SAS

- rio_args "exclusive_pref bit"

. Eath—_grgouping_policv “gro—uz_b;_priO" RAID su bS stem

= path_checker "tur"
. path_selector "round-robin 0"
= rr_weight "uniform"
= failback 2"
= no_path_retry "12"
= user_friendly_names "yes"
= dev_loss_tmo "10"
= fast_io_fail_tmo "g5"
= max_sectors_kb "8192"
. 1

LDISKFS/ZFS tunables:

= options zfs metaslab_debug unload=1 zfs_arc_max=150000000000 zfs_vdev_scheduler=deadline zfs_prefetch_disable=1 zfs_dirty data_max_percent=30
zfs_dirty_data_max_max=60236916326 zfs_dirty_data_max=60236916326 zfs_arc_average_blocksize=2097152 zfs_max_recordsize=2097152 zfs_vdev_aggregation_limit=2097152
zfs_multihost_interval=60000

Lustre Client Tuning

Ictl set_param osc.*.checksums=0

*" You may already have network checksums enabled and don’t need this
= Performance penalty

ctl set_param timeout=600
ctl set_param Idlm_timeout=200
ctl set_param at_min=250
ctl set_param at_max=600

ctl set_param ldim.namespaces.*.lru_size=128
= Might be ignored sometimes (current bug LU11518)
= Low number for computes (generally), high number for login nodes

ctl set_param osc.*.max_rpcs_in_flight=32

ctl set_param osc.*.max_dirty _mb=64

ctl set_param debug="+neterror”

= Rick will talk more about this later

Lustre Router Tuning

* Check if LNET routing is enabled on this node
= cat /sys/kernel/debug/Inet/routes

e LNET router buffer sizes

= Defaults are generally too small
" Can be changed on the fly

= How we tune it:
— tiny: 8192

e Zero-payload (signals and acks)

—small: 131072
» 4k payload (metadata, zero-length file, etc...)

— large: 4096

* 1m max payload (file data)

* Different credit sizes per interface?

=" Depends on the networks you are routing between

Performance Monitoring

* Jobstats (job-level)

= \We assume single job per node and tag each
lustre client with a job ID using the scheduler
prologue/epilogue

" You can gather this data as time-series or just
have a report for what the total 10 activity for the
job was using tools like splunk/influx-Grafana

Performance Monitoring

e Darshan (job-level)

" | oad an environment
module

= Users compile code with
darshan loaded

= Darshan intercepts I/Os
and gathers statistics

®» Tools exist to visualize data

*= Minimal performance
impact

Performance Monitoring

* Brw_stats (OST/MDT target level)

= Can use a data collector tool (cerebrod, telegraf, etc...) to collect the
brw_stats data for each OST

= Put this data into analytics tool (like splunk) to visualize

" Dumps the following data:
— pages per bulk r/w
— discontiguous pages
— disk I/Os in flight
—1/0 time (1/1000s)
— disk 1/0 size

Performance Monitoring

e LMT —ltop
= Collects metadata, bandwidth, and
other server-side stats

= Puts data in a database via data
collection tool (cerebrod)

= Different interfaces to view the data
(Itop and lwatch)

e Controller-local IO statistics

= DDN, NetApp, Adaptec, etc... should
present B/W, I/0O size, IOPS, latency
etc... for LUNs, PDs, host ports, etc...

Health Monitoring

* At ORNL we use Nagios

" Provides a dashboard for system health

* Monitoring
= OK, warning, critical
e Alerting

= Business hours
" non-business hours
" never page

Health Monitoring

* block-device tuning checks

= Need to make sure that the 10 scheduler, nr_requests, timeouts, etc are
tuned correctly.

" These can be lost after an upgrade.

e Mounted devices check:

= Make sure that all of your OSTs are
mounted

— sounds ridiculous, but this can happen
at 2AM

e Server health
(memory/processor/fan/power-

supply)
= Many hardware vendors provides
tools already
— OpenManage (Dell), iLO (HP), etc...

— ipmitool sdr
 Hundreds of sensors available

Health Monitoring

e Critical services monitoring:

= Want to make sure that services that are required for system operation
are “running”

= Examples: srp_daemon/opensmd/crond/postfix

= Simple script that parses ‘systemctl status <service>" output

* Multipath health
= Script that parses multipath —II’
= 2 paths: Healthy,

= 1 path: warning,

" 0 paths: critical

Health Monitoring

* Host IB health
* Network link health (lane count and speed)
= Check for card->PClI bus link health

= Check counters changes over time
— Symbol errors

— LinkDownedCounter
— VL15 Dropped

Health Monitoring

e Switch-to-switch IB health

" ‘ibdiagnet is insufficient for finding all switch-to-switch IB link issues
— It will help you find unhealthy links
— Links can go dark and will not be detected

" Down IB links can cause performance issues

— If using AR, they can even make the network re-route which causes unavailability
for a small time

— Non-symmetric routes can cause ~3-5% performance drop

= Script that knows IB network topology and checks for it to be sane

— Knows that the switch cables are connected to the correct port on the correct
switch

* Impacts network routing

— Knows that the host cables are connected to the correct port on the correct switch
* If improperly cabled can impact FGR

— Check link speed

— Check link width

Health Monitoring

* Lnet_stats
* Monitor changes in " Inetctl stats show to show LNET congestion or errors

= Set threshold to report on changes in backlogged messages “msg_alloc”
— Example 30000

" Can set a threshold for downed routes, dropped messages, etc...

e Lustre health
= Simple script that checks the status of 'Ictl get_param -n health_check’
= Tells you if a OST is mounted read-only, is slow, corrupt, etc...

e Lstimer

" |nside of each cluster network (if routed), check to make sure that you can
‘Is” inside of a lustre directory within a certain timeout

= Will tell you if lustre is being slow or not
— Helps to get in front of users complaining

15-minute break

Open Scalable File Systems, Inc.
3855 SW 153rd Drive Beaverton, OR 97006
Ph: 503-619-0561 | Fax: 503-644-6708
admin@opensfs.org | www.opensfs.org

Copyright © 2013 OpenSFS.

When Things Go Wrong

* Lustre Recovery

* Gathering debug information
* Network debugging

* Repairing file system issues

Lustre Recovery

* Lustre’s recovery mechanism is designed to deal with
node/network failures and keep the file system running in a

consistent state

 Some of the failures it is designed to handle are:

1. Client failure
2. MDT failure
3. OST failure

 MDS and OSS failures require methods to recover or replay
outstanding 1/0 requests from clients

Client Failure - Detection

* |tis important to detect client failure early so that remaining
clients can continue accessing the file system

* Two main ways to detect client failure:

1. Client fails to respond to a blocking lock callback from the
Distributed Lock Manager (DLM)

2. Client fails to “ping” server in a long period of time

 These conditions may occur even if the hardware itself has
not actually failed (e.g. — network link failure), but it is still
treated the same

Client Failure - Recovery

* When a client failure is detected, Lustre tries to ensure that
other clients can continue working

= Can’t afford to have one or more clients waiting to perform I/O while
they are trying to acquire a lock held by a dead client

e When a client is evicted:

= All client locks are invalidated
= All cached inodes on client are invalidated

= All cached data on client is flushed

 When client recovers, it may reconnect to the file system and
continue operations

MDT Failure - Detection

* Clients may detect MDT failure by timeouts of in-flight requests
or from Imperative Recovery
» Client MDC will attempt to connect to failover node if configured

" Only clients connected during the failure are permitted to reconnect
during the recovery window

 Client state will need to be communicated to MDT once
connection is reestablished

MDT Failure - Recovery

e Lustre uses the Metadata Replay protocol to ensure that MDS
can re-acquire necessary state information from client
transactions that have not been committed to disk

* The protocol uses transaction numbers to ensure operations
are replayed in the correct order

* Clients also communicate existing lock state to MDS

OST Failure - Detection

* |f an OST fails to respond to a client in a timely manner, the
corresponding OSC on the client will treat the OST as having

failed
= Qutstanding I/O requests will block until the OST has recovered
= OSC will try to reconnect to OST through a failover OSS node (if one
has been configured)

 Same logic applies if the “client” is the MDS

= MDS will note that OST is unavailable and skip it when assighing
objects to new files

OST Failure - Recovery

e OSC-to-OST recovery protocol is the same as the MDC-to-MDT
Metadata Replay protocol

= Bulk writes usually have been committed to disk so server just needs
to reconstruct the reply

= For other cases, normal replay/resend handling is done
" Client still has copy of data until it receives acknowledgement

* When OST is in recovery mode, all new client connections are
refused until the recovery finishes

= Recovery finishes when all previously-connected clients have
replayed transactions, or a client times out

Metadata Replay Protocol

* Every client request contains a unigue, monotonically
increasing XID to track order of requests

* Each request processed by server is assigned a unique,
increasing Transaction Number (TN)

= Reply to client’s request contains TN for the request along with the
last committed TN

e Server maintains last_rcvd file with list of connected clients
* During recovery

= Request with only XID = resend
= Request with TN = replay

Viewing Recovery Status

* To view recovery status of all OSTs

lctl get param obdfilter.*.recovery status

* To view recovery status of MDTs

lctl get param mdt.*.recovery status

* Example output:

status: COMPLETE
recovery_start: 1553204504
recovery duration: O
completed_clients: 1/1
replayed requests: 0

last_transno: 94574301709

Aborting Recovery

* |[n some cases, it may be known that recovery will not complete
properly, or perhaps recovery is not really necessary

" Previously connected client may currently be down

" File system was brought down cleanly, but there was an idle client
connected at the time

* Recovery can be aborted in two ways:

mount -t lustre -0 abort recov <dev> <mnt point>

lctl --device <dev _num> abort recovery

Gathering Debug Information

* When something goes wrong with Lustre, there are several
ways to grab useful information

* Some of these methods are useful for sys admins, and others
are primarily of use to developers

* Sources of debug information include:
= Syslog / dmesg
" Lustre internal debug logs
" Crash dumps
" Debugfs
= Wireshark

Syslog / dmesg

* Things to look for in log messages:
m Lustre / LustreError / Lnet / LBUG
= rc -30 (EROFS)
= Timeouts / evictions
" Messages that contain NIDs (10.1.2.3@02ib, etc.)

* |t's impossible to enumerate all the Lustre errors you might
see, so let Google be your friend

* Sometimes general pattern of messages can be just as useful
(or perhaps more useful) than the content of the messages

mailto:10.1.2.3@o2ib

Lustre Internal Debug Log

Lustre maintains an internal circular debug buffer

A debug mask is used to control what info gets logged

" Queryusing “1ctl get_param debug”
= Setusing “1ctl set_param debug=<mask>”
" Can also be set using “sysctl Lnet.debug”

Size of the buffer can be modified using
Lctl set param debug mb=<size>
Contents of buffer can be dumped to a file using
lctl debug kernel <filename>
See Lustre manual for info about debug mask options

Crash Dumps

* Use kdump (via kexec) to capture kernel info when LBUG is
encountered
1. Set kernel to panic on LBUG
lctl set param panic _on lbug=1
2. Install kexec-tools package

3. Add the following parameter to the kernel boot options:
crashkernel=<size> (or “auto”)

4. Modify /etc/kdump.conf if desired

— For example, send crash dumps over the network to another host

5. Start the kdump service
systemctl start kdump

e Use a program like crash to analyze output

debugfs

 When using ldiskfs for backend Lustre storage, you can inspect
the contents of the file system in two ways:

1. Mount the device with “-t Idiskfs” instead of “-t lustre”

2. Use the debugfs command

* One benefit of using debugfs is that you can view the contents
while Lustre is up and running

" In that case, it is best to use “debugfs -c” so that the device is
opened in read-only mode

* Even if there are no problems, spending some time looking at
the file layout can provide some insight into how Lustre works

Network Debugging

* Many Lustre issues can ultimately be traced back to network
connectivity problems

" Disruption of client-server communication leads to timeouts or
dropped requests

®» Clients see this as a server failure
m Servers see it as a client failure and evict clients

* Error messages might not make the issue obvious

" Client syslog message may complain about being unable to process
config from MDS, but the real reason is that it can’t even contact the
MDS

= Sporadic network problems make debugging even harder

Initial Troubleshooting

e |sthe firewall enabled?

* Does every node have the proper NID configured on the
correct interface?

* |f LNet routing is used, does the client and server have the
correct routes?

* Do any nodes have duplicate IP addresses?
 Canyou ping between nodes? Both ways?

e Canyou lctl ping between nodes? Both ways?
* Do the servers have MDTs/OSTs mounted?

Infiniband Issues

* Debugging Infiniband issues can get complex, but there are
some simple steps that often lead to results
" |s [PoIB configured?

" |s the installed version of Lustre built against the correct IB stack (in-
kernel vs. MOFED, version, etc.)?

" |s the IB firmware too old? Too new?
" Do IB bandwidth tests give expected results?

= Do IB HBA counters show any errors? What about counters on the IB
switch?

" Does output from ibnetdiscover, ibstat, etc. match what you expect?

Lnet selftest

* Lnet selftest is a useful tool for testing connectivity and
measuring network performance

* Can be used to test pairs of nodes or entire clusters

* To run Lnet selftest:

" load lnet selftest kernel module on all nodes
" Use lst command to add groups of clients and servers
" Use 1st command to specify type of test to run

" |nitiate test from any host on the fabric

Example: Lnet selftest

export LST_SESSION=SS
echo LST_SESSION=SLST_SESSION

Ist new_session io_test

Ist add_group clients 10.10.20.31@02ib0

Ist add_group servers 10.10.1.7@02ib0 10.10.1.8@02ib0

Ist add_batch bulk

Ist add_test --batch bulk --concurrency=8 --distribute 1:2 --from clients \
--to servers brw write size=1M

Ist run bulk

st stat servers & sleep 30; kill S!

Ist end_session

Repairing File System Issues

* Sometimes file system data structures can get into an
Inconsistent state

e Causes can include:
= Power failures
= Hardware failures

= Software bugs
* |nconsistency could be with Lustre’s internal data or with the
data structures of the backend Idiskfs/zfs file systems used on

the MDTs/OSTs
* Each layer has its own tools to deal with the problem

LFSCK (Lustre File System Checker)

* Lustre provides a tool for checking the consistency of its
internal state and repairing any problems

* Prior to Lustre 2.3, performing a full file system check was

slooooooow and painful
" Had to take Lustre offline to generate the needed databases of inode
information

" Best bet was just to run e2fsck on underlying Idiskfs file system and
hope it fixed enough of the problems

* LFSCK has been re-engineered to run with the file system
online (and in use)

File Identifiers and Objects

Object Index (Ol)

FID_A - Object A —

Object Index (Ol)
—
FID B = Object B =

LFSCK (Phase 1)

Maintain consistency of Object Index on MDT

Iterate through all objects on the OSD

= Make sure inode number in Ol matches with FID from inode’s LMA
xattr

Can be triggered manually or automatically
Maintains checkpoint file (scrub_status) on MDT

= Allows restart if scan is interrupted

= Contains stats about current scan

Supports rate limiting

LFSCK (Phase 1.5)

* Maintain consistency between the FID-in-Dirent info and
| MA/LINK xattrs in objects

* |terate through each object on OSD

* |fitis a directory, check each file entry
= Compare FID listed in dirent with LMA xattr of inode
= Compare file name from dirent with name from inode’s LINK xattr
= Compare FID from LINK xattr with FID of parent directory

* Supports checkpoint restart (Ifsck_namespace) and rate
limiting

* This check is not automatically triggered

LFSCK (Phase 2)

* MDT-OST consistency checking
 MDT object for a file contains list of child OST objects

* Child OST object contains FID for parent MDT object

* Check 4 different cases:
" Dangling reference — mdt_objl points to ost_objl, but ost_objl
doesn’t exist or doesn’t have PFID xattr
" Mismatched reference — mdt_objl points to ost_objl, but ost_obj1
points to mdt_obj2. mdt_obj2 doesn’t exist or recognize ost_obj1 as
child.
= Multiple references — mdt_objl and mdt_obj2 both point to ost_objl

* Unreferenced object - ost_objl points to mdt_objl, but mdt_objl
doesn’t exist or recognize ost_objl as child. No other mdt_obj points
to ost_objl.

LFSCK (Phase 2)

* Fixes ownership inconsistency between MDT and OST objects
(MDT ownership takes precedence)

 Will track errors, and if threshold is reached, will trigger full
Ifsck for file system

* Supports checkpoint restart and rate limiting

LFSCK (Phase 3)

Implements MDT-MDT consistency check for DNE

Similar to MDT-OST consistency check in many ways, but also
more complicated

Too many cases to list here
= Check http://wiki.lustre.org for design docs

Supports checkpoint restart and rate limiting

http://wiki.lustre.org/

Running LFSCK

* Full file system check is initiated via
lctl 1fsck start-M ${MDTO} -A -t all -r
* The -t option is used to specify which checks to run
" scrub — Run Ol scrub

" namespace — FID-in-Dirent, LinkEA consistency
" |layout — MDT-OST object consistency

e Other useful options

"N --dryrun
" -C --Create ostobj
= -C --Create mdtobj
" -0 --orphan

Example: Running LFSCK

[root@haven-mdsl ~]# 1lctl 1fsck start -M haven-MDTOOO0O -A -t all -r

[root@haven-mdsl ~]# 1lctl 1fsck query -M haven-MDTOOO00
layout mdts init: ©

layout mdts scanning-phasel: 1

layout mdts scanning-phase2: ©

layout osts scanning-phasel: 30
layout osts scanning-phase2: 12

namespace mdts _init: 0
namespace mdts scanning-phasel: 1
namespace mdts scanning-phase2: 0

Repairing ldiskfs corruption

* Since ldiskfs is based on ext4, journaling helps keep the file
system in a consistent state

If a problem occurs that cannot be fixed by the journal, it will
be necessary torun e2fsck

" One possible symptom of this is when the logs contain “-30” (EROFS)
errors

" Only need to run e2 fsck on the device(s) that contain errors
* General procedure:

1. Replay journal
2. Run e2fsck in non-fixing mode
3. Rune2fsck to fix problems

Example: Running e2 fsck

NOTE: Always use latest e2fsprogs from Whamcloud
https://downloads.whamcloud.com/public/e2fsprogs/latest/

Unmount affected device
root# umount /mnt/ost

If possible, use logger to capture output
root# script /tmp/e2fsck.sda

Replay journal
root# mount -t ldiskfs /dev/sda /mnt/ost

root# umount /mnt/ost

Example: Running e2fsck (cont.)

Run e2fsck in non-fixing mode

root# e2fsck -fn /dev/sda
..[output]..

Fix the errors

root# e2fsck -fp /dev/sda
.Loutput]..

* Might need to follow-up with LFSCK if there are lots of
problems

/FS maintenance

ZFS handles consistency issues differently from ldiskfs
Admins should periodically scrub zpools

" Can be done while zpool is online and Lustre is running
= Causes I/0 to disk which could have some affect on the file system
» Recommended interval = 1 month (?)

Example:
zpool scrub <pool name>

Can reduce impact from scrub by adjusting sysctl parameter
vfs.zfs.scrub delay

Other Useful Admin Info

 Striping Considerations
* OST allocation (Round-robin vs. Weighted)

* Advanced file layouts

" Progressive File Layout (PFL)
= Data on MDT (DoM)

Striping Considerations

* Basic file striping is pretty straightforward
" Most of the time, just choose a stripe count
= Sometimes you might adjust the stripe size
= Other options probably used even less

* For user, striping is usually about performance

Knowledge of application IO pattern
2
Customized striping parameters

4

Less contention, better 10 performance

e But admins have additional concerns...

Default stripe count

* Choosing the default stripe count for a file system can be a
tricky proposition
* Too low =2 Fill up OSTs with large files
* Too high 2 Consume more inodes on OSTs than needed
" Progressive File Layouts can help with this

Choice of default stripe count might also affect how you
choose to format the MDTs/OSTs

* |[n any case, it’s a good idea to have some general guidelines for
users

" Ex — At least 1 stripe for every 100 GB of file space

Improperly striped files

Whatever striping guidelines you choose, users still won’t
listen...

May need to track down large files with small stripe counts
that are filling up OSTs

Options:

1. Ifs find (could take a while)

2. Robinhood (if you already have this tool)
3. OST usage distribution (quick, but limited)

The last option is handy, but sometimes requires a little work

Searching for Improperly Striped Files

* Look at distribution of OST usage
" Run “Ifs df <filesystem>| sort -nk 5”

= | ook for anomalies at the tail end

* Find the user(s) with the most usage on OST

" Run “Ifs quota -l <ost_idx> -u <user> <filesystem>" command for each
user

" Look for one or more users with abnormally high usage
" These are your initial candidates for investigation

* Try to locate the offending files

Example

naven-0S
naven-0S

naven-0S

naven-0S
naven-0S
naven-0S

naven-0S

TO00e_UUID
TOOla_UUID
TO017_UUID
...<snip>...

T0019 UU
TO0O05 _UU
TO008 UU
T0O013 UU
naven-0ST001b_UU

o U U U U

XX X40% /
XXX41% /
XXX41% /

XXX51% /
XXX52% /
XXX52% /
XX X53% /
X X X 65% /

ustre/
ustre/
ustre/

ustre/
ustre/
ustre/
ustre/
ustre/

naven

naven

naven

naven
naven
naven

naven

naven

filesystem summary: x x x 46% /lustre/haven

[0N)
oS
oS

OS]
OST:5]
OST:8]
OS]
OS]

14
26
23

19
27

:25]

Inode Calculations

e Default stripe count and average file size are important factors
for planning a new file system

" These factors help determine the number of inodes needed on
MDTs/OSTs which in turn can affect formatting options and device
Size requirements

* Number of MDT inodes:
" num_osts * ost_size / avg_file_size

= Recommend doubling this to allow for future expansion or smaller
than expected file size

e Number of OST inodes:

" num_mds_inodes * default_stripe count / num_osts
= Recommend 2x-4x padding

Inode Calculations (cont.)

ZFS has variable number of inodes

= MDT still needs enough space to allow about 4KB per inode
|diskfs creates fixed number of inodes during format
Defaults for Lustre 2.10:

" inode size = 1KB
= MDT will have 1 inode for every 2.5KB
= OST will have 1 inode for every 1MB (if OST size > 8TB)

Can alter inode ratios by adding option to mkfs.lustre:

--makefsoptions=“-1 <bytes-per-inode>"”

Adjust this option to get desired number of inodes

Inode Disparity

* Primary goal of these calculations is to have parity among MDT
and OST inode counts

= |deally, inode and space usage track each other

* Disparity can show up in non-obvious ways

Ifs df -i /IfsO1

UUID Inodes IUsed Ifree IUse% Mounted on
MDTO000 2402287616 46560885 2355726731 2% /share/lfsO1[MDT:0]
OST0001 24117248 22883788 1233460 95% /share/IfsO1[OST:1]
OST0003 24117248 22903308 1213940 95% /share/IfsO1[OST:3]
OST0004 24117248 22895442 1221806 95% /share/IfsO1[OST:4]
OST0006 24117248 22890201 1227047 95% /share/IfsO1[OST:6.

summary: 51457138 46560885 4896253 90% /share/IfsO1

OST Object Allocation

* When a new file is created, Lustre allocates objects on
OSTs according to desired stripe count

-bash-4.2S Ifs getstripe testfile

testfile

Imm_stripe_count: 4

Imm_stripe_size: 1048576

Imm_pattern: 1

Imm_layout_gen: O

Imm_stripe_offset: 8
obdid objid objid group
8 231338244 Oxdc9f104 0
39 20273590 0x13559b6 O
30 20441490 0x137e992 O
38 20549867 0x13990eb O

OST Allocators

* How does Lustre decide which OSTs to assign to a file?

 Two different allocators
= Round-robin
= Weighted

* Choice based on how “balanced” usage is (as defined by the
target window)

<€ —_—

-< -’

Max OST Free Space Min OST Free Space

Window
— (as % of max free)

Round-Robin Allocator

 Round-robin allocator is used if the OST usage is balanced (i.e.
— all OST free space falls within target window)

e OSTs are assigned sequentially from an internal list

 List is not necessarily sequential with regards to OST index

" Accounts for things like OSTs being on different nodes

0OSS1 0SS 2
OST1 OST2 OST3 | OST4

List = | OST 1 OST 3 OST 2 OST 4

Weighted Allocator

* Weighted allocator is used when OST usage is not balanced

e OSTs are assigned a weight based on the amount of free space
and their location

= Emptier OSTs have a higher weight and are more likely to be selected

* Algorithm makes random selection based on weights

" Even OSTs with the least free space still have some chance of being
selected

* The goal is to divert more I/O to OSTs with the most free space
while still utilizing other OSTs to some extent

Adjusting Allocator

* Admins have some control over which allocator is used and
how the Weighted allocator assigns weights

* Control size of window used to determine if OST usage is
balanced

= /proc/fs/lustre/lov/<name>-MDT0000-mdtlov/qos_threshold rr
= Default value is 17%

" |f set to 100%, round-robin is always used

* Control how much weight is affected by free space

= /proc/fs/lustre/lov/<name>-MDT0000-mdtlov/qos_prio_free
» Default value is 91%

" |f set to 100%, weights are based solely on free space

Advanced File Layouts

e Recent versions of Lustre have added some features that
provide more options beyond current basic layout

1. Progressive File Layout

= Provides ability to adjust file layout as the size of the file grows.

" Essentially creates different basic layouts for different sections of a
file

2. Data on MDT

= Store some (or possibly all) file contents on the MDT itself

Progressive File Layout (PFL)

* Introduced in Lustre 2.10

* A PFL file is essentially an array of basic layouts (components)
that cover different non-overlapping sections of a file

| stripe 4 stripes 32 stripes

><€ >€

[0,2MB) [2MB,256MB) [256MB,EOF)

PFL Benefits

* Fine-grain control of layout could provide performance
Improvements
* File layout can be adapted on-the-fly

" Only need to define initial component
= Add components when needed
" Don’t use more OST inodes than necessary

* Choose a default PFL for all users that gradually increases stripe
count as the file size increases
" No more full OSTs! (maybe...)

* Underlying composite layout structure forms basis for other
layout options

PFL Examples

Create PFL for previous figure
Ifs setstripe -E 2M -c 1 -E 256M -c 4 -E -1 -c 32 <file>

Create starting layout, then add component
Ifs setstripe -E 2M -c 1 -E 256M -c 4 <file>
Ifs setstripe --component-add -E -1 -c 32 <file>

Display all components of file ,
NOTE: Will only see OST

objects for instantiated
components

Ifs getstripe <file>

Data on MDT (DoM)

Introduced in Lustre 2.11

Designed to improve file I/O by placing small files (or the first
part of a larger file) directly on MDT

" Helps eliminate extra RPCs to OSTs
* Advantageous if MDT storage is faster than OST storage

This is a special case of PFL in which the first component has a
single stripe that resides on the MDT

Example:

Ifs setstripe -E 1M -L mdt -E 256M -c 4 -E EOF -c 10 <file>

DoM Settings

 Some care must be taken when allowing users to place data
directly on the MDT

 Admins can limit the size of the file’s first stripe that resides on
the MDT

* Controlled via dom_stripesize parameter (default=1MB,
disabled=0):

Query value

Ictl get_param lod.*MDT0000*.dom_stripesize
Set value temporarily

Ictl set_param lod.*MDT0000*.dom_ stripesize=<value>
Set value permanently

Ictl conf_param <fsname>-MDTO0000.lod.dom_stripesize=<value>

Panel Session

Questions?

Open Scalable File Systems, Inc.
3855 SW 153rd Drive Beaverton, OR 97006
Ph: 503-619-0561 | Fax: 503-644-6708
admin@opensfs.org | www.opensfs.org

Copyright © 2013 OpenSFS.

