
LUG 2019

Lustre & Security
sbuisson@whamcloud.com

whamcloud.com

Different Security Requirements

►User/node authentication
• Only authenticated users have access
• Only authenticated nodes are part of Lustre

►Access control
• DAC (Discretionary Access Control)
• MAC (Mandatory Access Control)

►Multi-tenancy
• Provides isolated namespaces from a single file system
• Limited namespace exposed to clients

►Encryption
• Wire Encryption (Network)
• Data Encryption (Logical and Physical)

►Audit

whamcloud.com

Access control

Multi-tenancyAudit

Encryption

User/node
authentication

whamcloud.com

Lustre User/Node Authentication

►Based on Kerberos Authentication Protocol
• relies on a 3rd party Kerberos server
•with Kerberized Lustre
ousers need their own Kerberos credentials to access

Lustre file system
–not just UID/GID perms

onodes need Kerberos credentials to be part of the file
system
–prevent from adding illegitimate client or target

•Available with Lustre 2.8

https://en.wikipedia.org/wiki/Kerberos_(protocol)

whamcloud.com

Kerberos on Lustre HOWTO: Credentials

►Every file system access needs to be authenticated with Kerberos
credentials, named principals:
•MGS
lustre_mgs/<mgt hostname on the interconnect network>.DOMAIN

•MDS
lustre_mds/<mds hostname on the interconnect network>.DOMAIN

•OSS
lustre_oss/<oss hostname on the interconnect network>.DOMAIN

• Client
lustre_root/<client hostname on the interconnect network>.DOMAIN

►Note that users need their own principals

whamcloud.com

Kerberos on Lustre HOWTO: Activation

►Start server-side daemon
• on all server nodes (MDS, OSS), userspace daemon responsible for checking

authentication credentials
lsvcgssd -vv -k

►Enable Kerberos authentication by setting flavor
mgs# lctl conf_param <fs>.srpc.flavor.default = krb5n
mgs# lctl conf_param <fs>.srpc.flavor.o2ib0 = krb5n
mgs# lctl conf_param <fs>.srpc.flavor.default.client2ost = krb5n

•MGS particular case
mgs# lctl conf_param _mgs.srpc.flavor.default=krb5n

Þ‘-o mgssec=flavor' mount option required when mounting Lustre
targets and clients

whamcloud.com

Shared-Secret Key (SSK)

►If not possible to implement Kerberos for policy or resource reasons
• Lightweight authentication mechanism is possible in Lustre to allow rapid

deployment

►SSK offers strong authentication, by preventing clients from mounting
without the shared key
• directly implemented in Lustre
• SSK does not rely on external server
• users do not need any key, only nodes are authenticated

►Available with Lustre 2.9

whamcloud.com

SSK HOWTO: Shared Secret Key

►Secret Keys are generated ahead of time with lgss_sk…

lgss_sk -t server -f testfs -w testfs.server.key
lgss_sk -t client -m testfs.client.key

►…then distributed to all Lustre servers and clients that share these keys
o usually via SSH

whamcloud.com

SSK HOWTO: Activation

►Start server-side daemon
• on all server nodes (MDS, OSS), userspace daemon responsible for checking

authentication credentials
lsvcgssd -vv -s

►Enable SSK authentication by setting flavor
mgs# lctl conf_param <fs>.srpc.flavor.default = skn
mgs# lctl conf_param <fs>.srpc.flavor.o2ib0 = skn
mgs# lctl conf_param <fs>.srpc.flavor.default.client2ost = skn

•MGS particular case
mgs# lctl conf_param _mgs.srpc.flavor.default=skn

►Use ‘skpath’ option to mount targets and clients
-o skpath=/path/to/ssk.key

whamcloud.com

Access control

Multi-tenancyAudit

Encryption

User/node
authentication

whamcloud.com

Lustre Access Control

►DAC (Discretionary Access Control): always been there
otraditional Unix system of users, groups, and read-write-execute rights is a DAC

implementation
oenforced on MDS side
ÞMDS servers must have access to users and groups database, similarly to client

nodes.

►MAC (Mandatory Access Control): available with Lustre 2.8
• SELinux support in Lustre
oTargeted policy
oMLS policy
• enforced on client side

whamcloud.com

Mandatory Access Control

►Objective
• protect from privilege escalation in OS

►Support of SELinux Targeted Policy in Lustre: Lustre 2.8
• defines confined and unconfined domains for processes and users

• enforced on client side
• need to store security information

permanently in file xattr
ouse of security.selinux xattr to

store security context

whamcloud.com

Mandatory Access Control

►Objective
• protect data sensitivity

►Support of SELinux MLS Policy in Lustre: Lustre 2.8
• comes on top of Targeted Policy
• defines the concept of security levels in addition to domains
• enforced on client side
• need to store security information

permanently in file xattr
ouse of security.selinux xattr to

store security context

whamcloud.com

Mandatory Access Control

► Distributed file systems specificity:
• really need to make sure data is always accessed by nodes with SELinux policy enforced
ootherwise data is not protected

► SELinux status checking: safeguard for security admins
• retrieve SELinux status on client nodes:

odecide on status retrieval frequency: only at mount, for every request, once in a while

• send clients’ SELinux status to servers along with requests

• on servers, compare info received from clients with reference status stored in nodemap
odeny access if no match

► Available with Lustre 2.13 / 2.12.1

– which policy module loaded – policy is not altered– SELinux is enforced

whamcloud.com

SELinux for Lustre HOWTO

►Just enforce desired SELinux policy on all Lustre clients
►Nothing required on servers

►If you want more: SELinux status checking
• determine SELinux Policy Info

client# l_getsepol
SELinux status info: 1:mls:31:40afb76…

• enforce SELinux Policy Check
mgs# lctl nodemap_set_sepol --name restricted --sepol '1:mls:31:40afb76…'

• send SELinux Status Info from clients
osend_sepol ptlrpc kernel module's parameter

whamcloud.com

Access control

Multi-tenancyAudit

Encryption

User/node
authentication

whamcloud.com

►Isolation design:

►Isolation enables Multi-tenancy:
• different populations of users on the same file systems
• isolation of these different populations of users

►Available from Lustre 2.10

Mount only a portion of the
namespace
Allowance based on client’s
identity

Automated presentation of
allowed fileset
UID/GID mapping

Trust clients’ network ID

Multi-Tenancy: Concept

Subdir
mount Nodemap

Identification

whamcloud.com

Multi-tenancy: How to Implement

►Narrows down to
• ability to properly identify the client nodes used by a tenant
• trust those identities

whamcloud.com

Multi-tenancy: Method A

►Users cannot be root
• clients’s NIDs can be trusted
•multi-tenancy guaranteed by subdirectory mount and nodemap

lctl set_param nodemap.<nodemap_name>.fileset=‘/<directory>’

• groups of clients assigned to each tenant can change over time
oneeds to update tenants definitions in nodemaps

whamcloud.com

Multi-tenancy: Method B

►If Root is Possible on Clients
• are Lustre clients running inside VMs or containers?
oadvantage: dynamically assign NIDs to clients used by tenants

odrawback: malicious user may use root privileges to change Lustre client NIDs

•make use of strong authentication
oKerberos - if already in place at customer site
oShared-Secret Key is Lustre-specific alternative, much easier to implement

• how does it work?
omaliciously modified client NID will not match client’s key

–installed in VM or container by sec admin

oLustre servers will refuse connection

whamcloud.com

=> @tcp2101

=> @tcp2102

=> @tcp2103

Tenant #1

Multi-tenancy: Method C - make use of LNet routers

Tenant #2 Tenant #3

Object Storage Servers (OSS)

@o2ib0

@tcp2103@tcp2102@tcp2101
LNET Routers

Lustre
Clients

root

/dirA /dirB /dirC

Metadata Servers (MDS)
& Management Server (MGS)

Lustre Nodemap
& Subdirectory Policy

/dirA => Tenant1

/dirB => Tenant2

/dirC => Tenant3

VLAN=2103

VLAN=2102
VLAN=2101

with VLANs

whamcloud.com

Multi-tenancy: asymmetrical route detection

►Asymmetrical route

►Purpose is to drop asymmetrical route messages
lnetctl set drop_asym_route 1

►Available with Lustre 2.13 / 2.12.1

• could be the clue of hostile
clients injecting data to the
servers

whamcloud.com

Access control

Multi-tenancyAudit

Encryption

User/node
authentication

whamcloud.com

Encryption – On the Wire

►Objective
• protect data transfers between nodes
o‘Man-in-the-middle’ attacks

►Encryption over the network with Kerberos krb5p or SSK skpi flavors
• for communications between Lustre clients and servers
• data encrypted on emitter’s side before sending
• data decrypted on recipient’s side upon receipt
• large performance impact

►Available from Lustre 2.8 (Krb) / 2.9 (SSK)

whamcloud.com

Encryption – Data at REST

►Objective
• protect against storage theft
• protect against network snooping

►Encryption at Lustre client level
• applications see clear text
• data is encrypted before being sent to servers
• data is decrypted upon receipt from servers
• servers only see encrypted data
• only client nodes have access to encryption keys

►Available in 2.14+

whamcloud.com

Access control

Multi-tenancyAudit

Encryption

User/node
authentication

whamcloud.com

Lustre Audit Facility

►Objective
• provide records of all Lustre access

►Use Lustre changelogs
• log activity on MDTs
• record file system namespace & metadata events
owith UID:GID and NID info
• record even failed access attempts
• limit duplicate open() and close() events
• restrict nodes from which activity is recorded

►Available from Lustre 2.11

whamcloud.com

Lustre Audit HOWTO

►All Changelog record types must be enabled, to be able to record events such as
OPEN, ATIME, GETXATTR and DENIED OPEN

►Enable all changelog entry types:
lctl set_param mdd.<fsname>-*.changelog_mask=ALL

►Then, just register a Changelogs user:
lctl --device <fsname>-<MDT number> changelog_register

►Control which Lustre client nodes can trigger the recording of file system access
events to the Changelogs

lctl nodemap_modify --name <nodmap_name> \
--property audit_mode --value=<0,1>

sbuisson@whamcloud.com

Thank you!

