
Andreas Dilger

Lustre 2.13 and Beyond

whamcloud.com2

Upcoming Release Feature Highlights

►2.13 development and landing underway, ETA August, 2019
• Persistent Client Cache (PCC) – store data in client-local NVMe

• DNE automatic remote directory – improve load/space balance across MDTs

• LNet User Defined Selection Policy – tune LNet Multi-Rail interface selection

►2.14 already has a number of features underway
• File Level Redundancy – Erasure Coding (EC) for striped files
• OST pool quotas – manage space on heterogeneous storage targets

• DNE directory auto-split – improve usability and performance of DNE2

►2.15 plans continued functional and performance improvements
• Client-side data encryption - end-to-end data privacy

• Client-side data compression - data size reduction, improved network bandwidth

• LNet IPv6 - improved addressing, with simplified network configuration

whamcloud.com3

LNet Network Selection Policy and More (WC 2.13+)

►User Defined Selection Policy (LU-9121)
• Builds on LNet Multi-Rail in 2.10/2.11
• Fine grained control of interface selection
o TCP vs. IB networks, primary vs. backup
• Optimize RAM/CPU/PCI data transfers
• Useful for large NUMA machines

►LNet Unit Test Framework (LU-10973)
• Improved test configuration/coverage for LNet

►IPv6 Investigation, Design, and Implementation (LU-10391)
• Remove direct NID usage from Lustre config files
• Simplify server address changes (DHCP even?)
• Protocol change, with interoperability for existing releases

DONE
TODO

https://jira.whamcloud.com/browse/LU-9121
https://jira.whamcloud.com/browse/LU-10973
https://jira.whamcloud.com/browse/LU-10391

whamcloud.com4

Data-on-MDT Improvements (LU-10176 WC 2.12+)

►Complementary with DNE 2 striped directories
• Scale small file IOPS with multiple MDTs

►Read-on-Open fetches data (LU-10181)
• Reduced RPCs for common workloads

► Improved locking for DoM files (LU-10175)
• Convert write locks to read locks

►Migrate files with MDT component to OST-only layout (LU-10177)
►Support DoM+FLR components (LU-10112)
►Migrate DoM component from OST to MDT via FLR (LU-11421)
►Cross-file data prefetch via statahead (LU-10280)
►Allow MDT-only filesystem (LU-10995)

Client

layout, lock, size, read data

MDS

open, read, getattr

Small file read directly from MDS

DONE
TODO

https://jira.whamcloud.com/browse/LU-10176
https://jira.whamcloud.com/browse/LU-10181
https://jira.whamcloud.com/browse/LU-10175
https://jira.whamcloud.com/browse/LU-10177
https://jira.whamcloud.com/browse/LU-10112
https://jira.whamcloud.com/browse/LU-11421
https://jira.whamcloud.com/browse/LU-10280
https://jira.whamcloud.com/browse/LU-10995

whamcloud.com5

DNE Improvement (WC 2.12+)

►Directory restriping from single-MDT to striped/sharded directories (LU-4684)
• Rebalance MDT space usage, improve large directory performance

►Balance MDT usage by creating new directories on MDT with most free space
• Simplifies use of multiple MDTs without striping all directories, similar to OST usage
• In userspace with lfs mkdir –i -1 (LU-10277)
• At directory mkdir() time for "size hashed" directory layout (LU-10784, LU-11213)

► Improved DNE file create performance for clients (LU-11999 Uber)
►Automatic directory restriping as directory size grows (LU-11025)
• Create one-stripe directory for low overhead, scale shards/capacity/performance with size
• Add extra directory shards when master directory grows large enough (e.g. 10k entries)
• Move existing dirents to new directory shards
• New dirents and inodes created on new MDTs

Master +4 dir shards +12 directory shards

DONE
TODO

https://jira.whamcloud.com/browse/LU-4684
https://jira.whamcloud.com/browse/LU-10277
https://jira.whamcloud.com/browse/LU-10784
https://jira.whamcloud.com/browse/LU-11213
https://jira.whamcloud.com/browse/LU-11999
https://jira.whamcloud.com/browse/LU-11025

whamcloud.com6

ZFS Enhancements Related to Lustre (2.12+)

►Lustre 2.12.1/2.13 osd-zfs updated to use ZFS 0.7.12
• Bugs in ZFS 0.7.7/0.7.10/0.7.11, not used by Lustre branch
• Builds with upstream ZFS 0.8.0-rc code for testing

►Features in ZFS 0.8.x release (target 2019Q2)
• Sequential scrub/resilver to speed up disk repair/replace (Nexenta)
• On-disk data encryption + QAT hardware acceleration (Datto)
• Project quota accounting (Intel)
• Device removal via VDEV remapping (Delphix)
• Metadata Allocation Class (Intel, Delphix)
• TRIM/UNMAP support for flash devices (Nexenta, LLNL)

►Features underway for ZFS 0.9 release
• Declustered Parity RAID (dRAID) (Intel)

DONE
IN PROGRESS

whamcloud.com7

Miscellaneous Improvements (2.12/2.13)

►HSM infrastructure improvement & optimizations (Intel/WC, Cray)
• Improve Coordinator (LU-10699), POSIX Copytool (LU-11379), > 32 archives (LU-10114), …

► Lazy Size-on-MDT (LSOM) for local scan (purge, HSM, policy engine) (LU-9358 DDN)
• LSOM is not 100% accurate, but good for apps aware of limits (e.g. lfs find, statx(), …)

► Lustre-integrated T10-PI end-to-end data checksums (LU-10472 DDN)
• Pass data checksums between client and OSS, avoid overhead, integrate with hardware

►Foreign Layout file/directory in namespace (DAOS, CCI) (LU-11376 Intel)
► LSOM support for lfs find and other utilities (LU-11367 WC)
►SELinux policy verification to verify clients are using correct policy (LU-8955 WC)
► "lfs migrate -A" auto-stripe count when migrating files (LU-8207 NASA)

2.12
2.13

https://jira.whamcloud.com/browse/LU-10699
https://jira.whamcloud.com/browse/LU-11379
https://jira.whamcloud.com/browse/LU-10114
https://jira.whamcloud.com/browse/LU-9358
https://jira.whamcloud.com/browse/LU-10472
https://jira.whamcloud.com/browse/LU-11376
https://jira.whamcloud.com/browse/LU-11367
https://jira.whamcloud.com/browse/LU-8955
https://jira.whamcloud.com/browse/LU-8207

whamcloud.com8

Mmm,
Lustre

Kernel Code Improvements (ORNL, SUSE, WC, Cray)

► Lustre client removed from kernel 4.17 staging area L
• Work ongoing on client for upstream resubmission at https://github.com/neilbrown/linux

►Build/test with ARM64/Power8 clients (LU-10157)
►Major ldiskfs features merged into upstream ext4/e2fsprogs
• Large xattrs (ea_inode), directories over 10M entries/2GB (large_dir)
• Extended data in directory (dirdata)

►Existing ext4 features available that could be leveraged by ldiskfs
• Tiny files (1-800 bytes) stored directly in inode (inline_data)
• Metadata integrity checksums (metadata_csum)
• Efficient allocation for large OSTs (bigalloc)

►New ext4 features currently under development
• Verity – data checksums, directory shrink - reduce space as files deleted

DONE
TODO

https://github.com/neilbrown/linux
https://jira.whamcloud.com/browse/LU-10157

whamcloud.com9

File Layout Enhancements (WC 2.13+)

►Overstriping allows multiple file stripe objects per OST (LU-9846 Cray, WC)
• Extension of existing RAID-0 layout type, with fixes for large stripe counts
• Useful for shared-file workloads or very large OSTs (e.g. declustered-parity RAID storage)
• Improves storage utilization through higher concurrency (locking and threads)

►PFL Self-Extending Layouts (SEL) handles full OSTs during file write (LU-10070 Cray)
• Last component is a template to instantiate EOF component if needed

►Data Placement Policy (DPP) improves workload-to-layout mapping (LU-11234 WC)
• Allow selecting layout based on file extension, NID, UID, GID, JobID, ProjID, etc.

► Improved FLR replica selection at runtime (LU-10158)
• PREFERRED, SSD vs. HDD , near to client, read (many mirror vs. few)
• Allow specifying fault domains for OSTs (e.g. rack, PSU, network switch, etc.)

►OST/MDT quotas (LU-11023, Cray)
• Track/restrict space usage on flash OSTs/MDTs

https://jira.whamcloud.com/browse/LU-9846
https://jira.whamcloud.com/browse/LU-10070
https://jira.whamcloud.com/browse/LU-11234
https://jira.whamcloud.com/browse/LU-10158
https://jira.whamcloud.com/browse/LU-11023

whamcloud.com10

FLR Erasure Coded Files (LU-10911 WC 2.14)

►Erasure coding adds redundancy without 2x/3x mirror overhead
►Add erasure coding to new/old striped files after write done
• Use delayed/immediate mirroring for files being actively modified
• Leverage CPU-optimized EC code (Intel ISA-L) for best performance

►For striped files - add N parity per M data stripes (e.g. 16d+3p)
• Fixed RAID-4 parity layout per file, but declustered across files
• Parity declustering avoids IO bottlenecks, CPU overhead of too many parities
o e.g. split 128-stripe file into 8x (16 data + 3 parity) with 24 parity stripes

dat0 dat1 ... dat15 par0 par1 par2 dat16 dat17 ... dat31 par3 par4 par5 ...

0MB 1MB ... 15M p0.0 q0.0 r0.0 16M 17M ... 31M p1.0 q1.0 r1.0 ...

128 129 ... 143 p0.1 q0.1 r0.1 144 145 ... 159 p1.1 q1.1 r1.1 ...

256 257 ... 271 p0.2 q0.2 r0.2 272 273 ... 287 p1.2 q1.2 r1.2 ...

https://jira.whamcloud.com/browse/LU-10911
https://software.intel.com/en-us/storage/ISA-L

whamcloud.com11

Improved Client Performance (2.13+)

►Single thread create performance on DNE2 striped directories (LU-11999 Uber)
• Reduce locking overhead/latency for single-threaded workloads (780/sec -> 2044/sec)

► Improved client read performance (LU-8709, LU-12043 WC)
• Optimize single-threaded readahead using async prefetch threads with 128MB window
• Improved single-threaded streaming read performance (1.9GB/s -> 4.0GB/s)
• Multi-threaded IOR maintains performance (10817 MB/sec -> 11196 MB/s)

►Async Direct IO (AIO-DIO) improvement (LU-4198 Uber, WC)
• Reduce overhead of submitting small DIO data writes
• Enable async IO interface to avoid waiting on requests
• Other related changes to improve efficiency (single client 4KB read 80k IOPS -> 600k IOPS)

https://jira.whamcloud.com/browse/LU-11999
https://jira.whamcloud.com/browse/LU-8709
https://jira.whamcloud.com/browse/LU-12043
https://jira.whamcloud.com/browse/LU-4198

whamcloud.com12

Improved Server Performance for Flash (WC 2.12+)

►Reduce server CPU overhead to improve small flash IOPS (LU-11164)
• Performance is primarily CPU-limited for small read/write
• Any reduction in CPU usage directly translates to improved IOPS

►Avoid page cache on ldiskfs flash OSS (LU-11347)
• Avoids CPU overhead/lock contention for page eviction
• Streaming flash performance is often network limited

►TRIM of backend flash storage (LU-11355 WC)
• Pass-through to backend ldiskfs filesystem fstrim functionality
• Pass-through to backend ZFS filesystem TRIM functionality

►Improve performance of small, unaligned writes (journal?)
►Improve efficiency of ZFS IO pipeline
• Integrate with ABD in ZFS 0.8 to avoid memcpy() of data

DONE
TODO

https://jira.whamcloud.com/browse/LU-11164
https://jira.whamcloud.com/browse/LU-11347
https://jira.whamcloud.com/browse/LU-11355

whamcloud.com13

Flash FTL Garbage Collection Impact vs. TRIM

0

2000

4000

6000

8000

10000

12000
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Ba
nd

w
di

th
 (M

B/
se

c)

Number of Iteration

Continuous obdfilter-survey (9 x Intel P3520 1.2TB)

zfs-raid0-write

zfs-raidz2-write

ldiskfs-raid0-write

ldiskfs-raid0-write-trim

whamcloud.com14

Tiered Storage with FLR Layouts (2.12+)

► Integration with job scheduler and workflow for file prestage/drain/archive
►Policy engine to manage migration between tiers, rebuild replicas, ChangeLogs
• Policies for pathname, user, extension, age, OST pool, mirror copies, ...
• FLR provides mechanism for safe migration of file data
• RobinHood or Stratagem are good options for this

►Needs userspace integration and Lustre hooks
• Integrated burst buffers a natural starting point
• Mirror to flash, mark PREFERRED for read/write
• Resync modified files off flash, release space

►Quota on flash OST/MDT (LU-11023 Cray)
• Limit users from consuming all fast storage

► Integrate HSM into composite layout
• Allow multiple archives per file (e.g. tape + S3)
• Allow partial file restore from archive

Metadata
Servers
(~100’s)

Object
Storage
Servers
(1000s)

Metadata
Targets
(MDTs)

Management
Target
(MGT)

Object Storage Targets (OSTs)
(Warm Tier SAS/SSD)

Lustre Clients (~50,000+)NVM e M DTs
on client
network

Archive OSTs/Tape
(Cold Tier Erasure Code)

Policy
Engine

NVMe Burst Buffer/Hot Tier OSTs
on client network

DONE
TODO

https://jira.whamcloud.com/browse/LU-11023

whamcloud.com15

Persistent Client Cache (PCC) (LU-10092 DDN, WC 2.13+)

►Reduce latency, improve small/unaligned IOPS, reduce network traffic
►PCC integrates Lustre with persistent per-client local cache devices
• A local filesystem (e.g. ext4/ldiskfs) is created on client device (SSD/NVMe/NVRAM)
• Only data is local to client, no global/visible namespace is provided by PCC,
• Existing files pulled into PCC by HSM copytool per user directive, job script, or policy
• New files created in PCC is also created on Lustre MDS

►Kernel uses local file if in cache or normal Lustre IO
• Further file read/write access “directly” to local data
• No data/IOPS/attributes leave client while file in PCC
• File migrated out of PCC via HSM upon remote access

►Separate shared read vs. exclusive write cache
►Could later integrate with DAX for NVRAM storage OST OST OST

NVMe
CT #1

OSCs

llite PCC Switcher

Cache I/ONormal
I/O

Fetch
NVMe

CT #2

OSCs

llite PCC Switcher

Cache I/ONormal
I/O

Fetch

https://jira.whamcloud.com/browse/LU-10092

whamcloud.com16

Encryption – Data at REST (WC 2.14+)

►Keep data safe against common attack vectors
• Protect against storage loss/theft/return/mistakes/etc.
• Protect against network/user/admin snooping

►Encryption at client RPC level, only client has keys
• Data decrypted after RPC received from servers
• Applications see clear text, in page cache on client
• Data encrypted when building RPC to send to servers
• Network/servers/storage/backups only see encrypted data

►Based on fscrypt library from ext4 (for Android, don't invent own encryption!)
• Can enable encryption with user key(s) per directory tree
• Leverage client kernel crypto acceleration (CPU, dedicated hardware)
• Per-file encryption key(s), itself encrypted by user key
o Fast, secure deletion of file when key deleted with MDT inode, no overwrite needed
• Filenames encrypted before sending to MDS, works with DNE

