

IML Overview and Roadmap

Joe Grund

IML Team Lead

jgrund@whamcloud.com

Agenda

- IML Background / Overview
- IML 5
- Current Work
- Where to find project / communicate with team

<i>S</i> 3	
پې whamCloud ²	
Username	
Password	
■ Login	
Or Continue As Anonymous 🕢	

Background

- Integrated Manager for Lustre (IML) is an open source suite of tools for deploying, managing, and monitoring Lustre filesystems
- IML simplifies Lustre administration with intuitive interfaces and near real-time feedback
- Works with new and existing Lustre installations
- Monitors performance and system health
- Proven in production at hundreds of sites
- Used successfully in environments with over 200 OSTs

Background - Deployment

- Deploy Lustre filesystems from one centralized location (ZFS, ldiskfs)
- Near-realtime feedback
- Bring filesystem online from first principles or deploy monitoring for an existing filesystem
- Deploy specialized software, HSM
- Add more storage nodes, targets over time

Deployment scenario

- Admin needs to setup 50 servers with patchless ldiskfs 2.12.1
 - Wants HA capabilities
- Can use IML to deploy all 50 nodes in parallel
 - Uses customizable deployment profiles
 - Performs pre-flight checks
 - Installs packages
 - Configures initial HA
 - Configures NTP
 - Starts LNet
- Provides realtime feedback of entire process for all nodes

Add Server - Check S		×
Filter by Hostname / Hostlis	Expression	
i≡ oss[1-50]		
Status for oss1		
Resolve	← Previous	s Proceed ⊘ →
 Ping 	· Trevious	
 Auth 		
 Hostname valid 		
 Fqdn resolves 		
 Fqdn matches 		
 Reverse resolve Reverse ping 		
 Yum can update 		
 Openssl 		

Background - Management

- Configure / change state of Lustre and related components
 - Uses state-machine to reach end state from different starting points
 - Starting LNet, state machine ensures packages are installed + kernel modules loaded before bringing LNet up
- Handle recovery situations fencing, failover
 - Automatic configuration of High Availability through Corosync, Pacemaker, and PDU / IPMI integration

Management Scenario

- Admin wants to fail all targets from a server
- Can use IML to fail targets over to secondary HA node
- Can use IML to fail targets back to host when ready

رچ Whamcloud

Object Storage Targets

Background - Monitoring

رچ Whamcloud

- Holistic system metrics
 - Rich visualizations
 - Drill into filesystem, target, server
 - Find and monitor top jobs
- Aggregate logs across cluster
- HSM Copytool activity monitoring
- Alerts to cluster issues
 - GUI / Email / API
- Searchable command / event / alert log / history

I Jo	ob Stats : fs-O	ST0001 (9/6/18	21:42:20 - 9/6/1	8 21:42:50)								
				,								
Udshi	Doard / "an JOD Stats : 19-	-OST0001 (9/6/18 21:42:20	0 - 9/0/16 21:42:50)									
ĩop Jo	obs											
ĩop Jo	obs											
	bbs Avg. Read Bandwidth ,	Min. Read Bandwidth	Max. Read Bandwidth	Avg. Write Bandwidth	Min. Write Bandwidth	Max. Write Bandwidth	Avg. Read IOPS	Min. Read IOPS	Max. Read IOPS	Avg. Write IOPS	Min. Write IOPS	Max. Write I
Job		Min. Read Bandwidth 47.20 MB/s	Max. Read Bandwidth 47.20 MB/s	Avg. Write Bandwidth 0.000 B/s	Min. Write Bandwidth 0.000 B/s	Max. Write Bandwidth 0.000 B/s	Avg. Read IOPS	Min. Read IOPS 11.8	Max. Read IOPS	Avg. Write IOPS	Min. Write IOPS	Max. Write I

Monitoring Scenarios

- Admin wants to see which OSTs are experiencing high write bandwidth
 - Uses IML's read/write heatmap to determine OSTs
 - Clicks on OST cell in heatmap, can see which jobs are causing high write bandwidth
- Admin wants to see aggregated cluster logs to diagnose an issue
 - Uses IML to view all logs across the cluster one page
 - Searches for the particular issue and timeframe, finds the issues and can correlate with other activity through the cluster
- Admin wants to be alerted to potential issues
 - Sets up email alerts with IML, gets an email for specific events i.e. a target going offline

IML 5 - Docker

- IML 5 adds support for running within Docker stack
 - Install Guide: <u>https://whamcloud.github.io/Online-</u> <u>Help/docs/Install Guide/ig docker stack.html</u>
- Run the manager on any docker supported platform
- Continuously delivered to docker hub: <u>https://cloud.docker.com/u/imlteam/repository</u> <u>/list</u>
- Can collocate the IML manager with otherwise conflicting services
 - On lustre client / storage server
 - Alongside other admin tools

<pre>docker_power-control_1 wait-for-dependencies.sh p Up</pre>	Name	Command	State
	<pre>docker_corosync_1 docker_device-aggregator_1 docker_gunicorn_1 docker_iml-warp-drive_1 docker_job-scheduler_1 docker_lustre-audit_1 docker_nginx_1 docker_plugin-runner_1 docker_postgres_1 docker_rabbit_1 docker_realtime_1 docker_setup_1</pre>	<pre>wait-for-dependencies.sh p node ./device-aggregator-d wait-for-dependencies.sh g wait-for-dependencies.sh p wait-for-dependencies.sh i wait-for-dependencies.sh p /bin/sh -c dockerize -temp wait-for-dependencies.sh p /bin/sh -c dockerize sh p docker-entrypoint.sh postgres wait-for-dependencies.sh p docker-entrypoint.sh rabbi wait-for-dependencies.sh d setup.sh tail -f /dev/null</pre>	Up Up Up Up Up Up Up Up Up (healthy) Up Up (healthy) Up Exit 0
docker_syslog_1 wait-for-dependencies.sh p Up	docker_srcmap-reverse_1 docker_stats_1	<pre>node ./srcmap-reverse.js wait-for-dependencies.sh p</pre>	Up Up
	docker_srcmap-reverse_1	node ./srcmap-reverse.js	Up

IML 5 - Libzfs / ZED integration

- IML 5 uses libzfs and ZED for ZFS monitoring + management features
- Fine grained collection of pools / datasets / props / VDEV tree
- Enables near-realtime state changes
- Works together with Udev detection to provide a holistic view of cluster devices
- Used within IML, can also be used standalone
- Results in device detection / state changes being much faster in IML 5, lower resource usage and better scaling for larger clusters

IML 5 – HA Improvements

- IML has long had its own custom Resource Agent for managing Lustre dating back to its very first versions
- At a later point, a separate Resource Agent (RA) was developed and submitted to the Lustre repo
- IML 5 has switched to using this RA plus the upstream ClusterLabs ZFS RA
- Managed mode installs will use these RAs
- Stock HA setup, closer to general usecases

✓ ✓ Setup manage	d host mds1.lfs.local - Apr 04 2018 18:19:25	
Details:		
Created At	Apr 04 2018 18:19:25	
Status	Succeeded	
Jobs		
 Setup mana 	iged host mds1.lfs.local	
 Install pa 	ackages on server mds1.lfs.local	
🗸 Configur	e NTP on mds1.lfs.local	
 Configur 	e Corosync on mds1.lfs.local.	
 Enable L 	Net on mds1.lfs.local	
 Configur 	e Pacemaker on mds1.lfs.local.	
 Start 	Corosync on mds1.lfs.local	
 Start the 	LNet networking layer.	
 Load 	the LNet kernel modules.	
Logs		
Reboot of mds1.l	fs.local required to switch from running ke	rnel ker
		Close (9)

IML 5 – RPM Delivery

- IML is now completely delivered via Fedora Copr, there is no tarball installer
 - <u>https://copr.fedorainfracloud.org/coprs/managerforlustre/manager-for-lustre-5.0/</u>
- Download a .repo file and run yum install python2-iml-manager + setup command
 - https://whamcloud.github.io/Online-Help/docs/Install_Guide/ig_ch_05_install.html
- Components are shipped individually as separate RPMs in the repo
 - Bugfixes / non-breaking enhancements can be shipped for individual components
 - Bugfixes / non-breaking enhancements can be applied per-component, no need for full upgrade
- Switch to new repo
 - Previously: <u>https://copr.fedorainfracloud.org/coprs/managerforlustre/manager-for-lustre/</u>
 - Will continue to function, but will no longer receive updates
- Can update from 4.x to 5.x
 - <u>https://whamcloud.github.io/Online-Help/docs/Upgrade_Guide/upgrade_iml-4.0-el7_to_iml-5.0-el7.md</u>
- More frequent releases, move towards every two months for RPMs. New features across all components get bundled in

IML 5 - Continuous Integration / Delivery

- Individual modules tested in cloud providers (Travis CI / Azure Pipelines)
- Every landing triggers a build for docker cloud and development copr repo: <u>https://copr.fedorainfracloud.org/coprs/managerforlustre/manager-for-lustre-devel/</u>
 - Possible to evaluate new changes before they have been promoted
- Larger integrations tested in our public Jenkins instance
 - Managed mode
 - Monitored mode
 - Upgrade testing
- All contributions run through testing / code review

IML 5 – Lustre 2.12.1 Support

- IML 5 adds support for Lustre 2.12.1 <u>http://lustre.org/lustre-2-12-1-released/</u>
- Also supports Lustre 2.10.7 http://lustre.org/lustre-2-10-7-released/
- Support for patchless Idiskfs / ZFS in managed mode

IML - Upgradeability

- Support upgrades from:
 - closed-source IEEL versions / older Whamcloud versions to IML 5
 - Documents describe how to upgrade from
 - 2.4.x https://whamcloud.github.io/Online-Help/docs/Upgrade Guide/Upgrade EE-2.4-el6 to LU-LTS-el7.html
 - 3.1.x https://whamcloud.github.io/Online-Help/docs/Upgrade_Guide/Upgrade_EE-3.1-el7_to_LU-LTS-el7.html
 - 4.0.x <u>https://whamcloud.github.io/Online-Help/docs/Upgrade_Guide/upgrade_iml-4.0-el7_to_iml-5.0-el7.htm</u>

Current work – IML Rust Port

- As we continue scaling to ever-larger clusters, need a general solution for next generation of enhancements
- Requirements
 - Very fast (close to C speeds)
 - Low on resources / lazy
 - Easy to deploy (minimal dependencies)
- Wants
 - Able to scale with solving difficult problems
 - Can effectively schedule tasks to many different nodes and coordinate responses

Current work – IML Rust Port

- Port IML Components to Rust + Tokio
 - Rust
 - Fast
 - Low resource usage
 - No garbage collector, RAII, memory safe, sized types stack based by default
 - Rich type system allows you to write code that is free of subtle bugs and is easy to refactor without introducing new bugs
 - Extremely thorough, eliminates need to write interface checking unit tests
 - Can write parallel code that is verified by compiler to be free of data races
 - <u>Tokio</u> is an event-driven, non-blocking I/O platform for writing asynchronous applications
 - Internally uses a multithreaded, <u>work-stealing</u> based task scheduler.
 - Work happens in parallel, all cores utilized
 - Lazy computations, do nothing until spawned
 - Fast (Zero-cost abstractions)

Current work – IML Rust Port - WebAssembly

- <u>WebAssembly</u> (*Wasm*) is a binary instruction format for a stack-based virtual machine.
- Wasm is designed as a portable target for compilation of high-level languages like C/C++/Rust, enabling deployment on the web for client and server applications.
- Write the same code, it compiles to native code on the server, and Wasm in the browser.
 - Code reuse everywhere
- Faster than JS in the browser
- First component shipped as part of 5.0

whamcloud.com

Current work – IML Rust Port

- CPU bound code paths will benefit from speed improvements in Rust
- IO bound code paths will benefit from Tokio multithreaded work-stealing task scheduler.
 - Especially useful at scale, many tasks can be handled in parallel while keeping resource usage low
- Goal implement core in Rust, implement new features in Rust, port existing code into this core
 - Some Rust code already part of 5.0
 - Will be a gradual transition over the course of 5.0 lifetime

Requests / Second of "Fast" HTTP servers

whamcloud.com

Potential Future Work

Full ZFS Management

- IML should provide full ZFS management
 - Show all pools and datasets across a cluster
 - Provide drill-down navigation to elicit more detail on a selected target
 - Show the status of pools and datasets
 - Where imported, mounted, error conditions, configuration
 - Management
 - Create zpools / datasets
 - Support creation of various pool configurations: RAID-Z, Mirrored...
 - JBOD enclosure GUI
- I18n Support
 - IML text currently English, but IML is used all over the world
 - Modify/contribute *.po files consumed by services

Potential Future Work

- Enhanced Deployment
 - IML should make it even easier to setup Lustre
 - Deploy to large scale clusters with minimal operator intervention
 - Describe ideal cluster state
 - Expose variants as scalable UI widgets
 - Deploy installation in parallel with a single click

Where to find IML

- 5.0 Release (RPMS): <u>https://copr.fedorainfracloud.org/coprs/managerforlustre/manager-for-lustre-5.0/</u>
- 5.0 Release Docker: https://cloud.docker.com/swarm/imlteam/repository/list
- Help docs: <u>https://whamcloud.github.io/Online-Help/</u>
- Issues: https://github.com/whamcloud/integrated-manager-for-lustre/issues
- Direct line of communication via: <u>https://gitter.im/whamcloud/integrated-manager-for-lustre</u>
- Email: iml@whamcloud.com

Where to find IML - Demo Sandbox

- Easily use Vagrant + Virtualbox to spin up a VM cluster for demo / evaluation
 - https://github.com/whamcloud/Vagrantfiles/blob/master/iml-sandbox/Vagrantfile
 - vagrant up;
 - Creates a sandbox environment for running IML
 - 2 MDS, 2 OSS, 2 client nodes, iSCSI server node, admin node
 - Pre-configured networking for LNet, crossover cabling
 - Vbox fence agents installed
 - Shared storage
 - Supports snapshotting
 - vagrant provision --provision-with install-iml-5;
 - Installs IML 5.0 on admin node and set's it up
 - Docs on how to setup a fs with IML: <u>https://whamcloud.github.io/Online-Help/docs/Contributor_Docs/cd_Installing_IML_On_Vagrant.html</u>
 - In addition to manual fs setup, sandbox has automated provisioners for creating ldiskfs / ZFS filesystems
 - Useful for evaluating monitored mode

Help Wanted

- Check Github issues for help wanted opportunities
 - <u>https://github.com/issues?utf8=%E2%9C%93&q=is%3Aopen+is%3Aissue+archived%3Afalse+user%3Awhamcloud+label%3A%22help+wanted%22+</u>
 - Easy to implement, team guidance
- Open an issue / submit a PR
- Use a release train model, pull in work once it's done
- Want your feedback on useful enhancements
- Projects are public
 - <u>https://github.com/orgs/whamcloud/projects</u>

Closing

- IML is a project with a long history and continues advancing
 - Deployed in production at hundreds of sites since its launch in 2012
 - Open source since 2017
 - Latest release IML 5.0 is now GA
- Possible to upgrade from IEEL to IML 5
 - Upgrade docs for 2.4.x, 3.1.x, 4.0.x lines
 - https://whamcloud.github.io/Online-Help/docs/Upgrade_Guide/Upgrade_EE-2.4-el6_to_LU-LTS-el7.html
 - <u>https://whamcloud.github.io/Online-Help/docs/Upgrade_Guide/Upgrade_EE-3.1-el7_to_LU-LTS-el7.html</u>
 - <u>https://whamcloud.github.io/Online-Help/docs/Upgrade_Guide/upgrade_iml-4.0-el7_to_iml-5.0-el7.html</u>

