}

Justin James . lustre User Group 2018
Applications Engineer, iRODS Consortium Argonne National Laboratory

Quick iRODS Overview ‘ =

IRODS is

e Open source

e Distributed

e Metadata Driven
e Data Centric

A flexible framework for the abstraction of infrastructure

DATA
VIRTUALIZATION DATA WORKFLOW SECURE

T B L)

IRODS as the Integration Layer

iIRODS

LA R R Discovery 1
COMMAND WEB APP Clients

LINE e ENVIRONMENT

iRODS provides a layer

of abstraction which
integrates with your
pre-existing infrastructure.

This flexibility allows your
infrastructure to continue
to change over time.

Existing

[N X]
INDEXING Infrastructure

STORAGE COMPUTE

iRODS Overview - Data Virtualization

DATA
VIRTUALIZATION

IRODS provides a logical view into the complex physical
representation of your data, distributed geographically,

and at scale.

Combine various distributed storage
technologies into a Unified Namespace

Existing file systems (Lustre, etc.)
Cloud storage

On premises object storage
Archival storage systems

iIRODS Overview - Data Virtualization

M
\]\RTUP‘L “"ESYST*,

CATALOG SERVICE PROVIDER

iRODS SERVER,
CATALOG SERVICE CONSUMER

(GOUEGTION

Logical Path

Physical Paths(s)

IRODS Overview - Data Discovery

DATA Attach metadata to any first class entity
DISCOVERY within the iRODS Zone

X e Data Objects

e Collections
e Users

e Storage Resources
e The Namespace

IRODS provides automated and user-provided
metadata which makes your data and infrastructure
more discoverable, operational and valuable.

Metadata Everywhere 1R

. a EXAMPLE ZONE 68
6B 6B |

00> %

VIRTUAL FILE SYSTEM

B. B.
o= 7L
vl- eeoe v eece

iRODS RESOURCES _—“

iRODS Overview - Workflow Automation

WORKELOW In.tegrated scripting Ianguagg W.hiCh is
AUTOMATION triggered by any operation within the
framework

e Authentication

e Storage Access

e Database Interaction
e Network Activity

e Extensible RPC API

The iRODS rule engine provides the ability to capture
real world policy as computer actionable rules which
may allow, deny, or add context to operations within
the system.

Dynamic Policy Enforcement i

S
® : On On
: Policy Success iRODS RPC API Success Policy
> > Enforcement
rsDataObjPut {...} Point

: > 0 Enforcement
. ! Point
iPUT
E PEP_DATA_OBJ_PUT_POST (...):

PEP_DATA_OBJ_PUT_PRE (...):

YOUR CODE HERE # YOUR CODE HERE

PRE OPERATION POST

The iRODS rule may:

e restrict access

e |og for audit and reporting
e provide additional context
e send a notification

Dynamic Policy Enforcement

Policy
Enforcement
Point

PEP_DATA_OBJ_PUT_PRE (...):
YOUR CODE HERE

On

Success

\V4

iRODS RPC API

On
Success

v

rsDataObjPut {...} |~ ¢

Policy
Enforcement
Point

PEP_DATA_OBJ_PUT_POST (...):

YOUR CODE HERE

Policy
Enforcement
Point

PEP_AUTHENTICATION_* (...):
YOUR CODE HERE

Policy
Enforcement
Point

PEP_DATABASE_* (...):
YOUR CODE HERE

Policy
Enforcement
Point

PEP_RESOURCE_* (...):
YOUR CODE HERE

A single API call expands to
many plugin operations all
of which may invoke policy
enforcement

Plugin Interfaces:
e Authentication
Database
Storage
Network
Rule Engine
Microservice
RPC API

10

Secure Collaboration

SECURE iRODS allows for collaboration across

COLLABORATION gdministrative boundaries after
deployment
a e No need for common infrastructure

e No need for shared funding
e Affords temporary collaborations

IRODS provides the ability to federate
namespaces across organizations without
pre-coordinated funding or effort.

11

iRODS Service Interface

Storage

12

Federation

Shared data .'g

and services

Institutional repositories)

DATA LIFECYCLE

Protect Dats Digital Reference
Data . Data Grid Processing 9 . Federation
Collection P Library Collection
ipeline
| | | | | |

Published

Preserved Sustained

State Private) Shared) Analyzed
Polic Local Distribution Service Description Representation Re-purposing
y Policy Policy Policy Policy Policy Policy

iRODS virtualizes the stages of the data lifecycle through policy evolution

As data matures and reaches a broader community,
data management policy must also evolve to meet
these additional requirements.

Motivation - Capturing the Products =

Focus on the bottom right hand side of the image

UNIFIED NAMESPACE

'DATA SOURCES
BRRRRRRRR,
BEEERREEES
BERBERBER
BRBBRRRRE,
BRERRREEES
BERBERBER

iRODS Lustre Framework

] b —
IR(E

IRODS Lustre Framework - Rationale

e Users want iRODS features (user metadata, policies, etc.) while
maintaining native Lustre filesystem access for users.

e {RODS already supports POSIX filesystems

= An iRODS vault can be located within a Lustre mount point

e However, this approach has some drawbacks:

= All modifications must go through the iRODS API

= Changes made directly to the filesystem will not be detected by iRODS
leading to drift between the filesystem and the iRODS catalog

= Existing tools must be rewritten to accommodate the iRODS API

= Does not take advantage of the highly efficient and distributed nature
of Lustre

17

IRODS Lustre Framework - Design Lf iR o

e Add iRODS features on top of the Lustre filesystem

= Users may continue to directly access filesystem.

= Use the Lustre changelog to keep iRODS data objects and
collections in sync with the Lustre filesystem.

= All catalog updates are in-place registrations only. No data
copies are required.

= Keep iRODS out of the critical data path. Performance of
the Lustre cluster is not impacted.

18

IRODS Lustre Framework - Efficiency Considerations

Accumulate and aggregate updates

Lustre Connector uses multiple threads to send
batched updates to iRODS in parallel

A plugin that resides within iRODS receives and
processes the bulk updates

Support scaling with multiple iRODS endpoints
and a distributed database

Iy

‘A
il

19

iRODS Lustre Framework - Overview

ot
=il

Changelog

Lustre

—

IRODS Lustre Connector

Changelog
Poller Aggregated Change List
w § e S—
x_
IRODS Updater Threads

TL T2 T3 TN

L

UNIFIED NAMESPACEE

iRODS API Plugin

20

IRODS Lustre Framework - iRODS API Plugin

e A dedicated iRODS API plugin within iRODS accepts and
processes bulk updates from the iRODS Lustre Connector.

e There are two modes for the iRODS API plugin:

m Direct - Plugin performs direct database updates. This
plugin bypasses the iRODS API architecture. Prioritizes
efficiency over policy.

= Policy - Plugin performs updates via iRODS API. This
executes all policy enforcement points (PEPs) within
IRODS. Prioritizes policy over speed.

21

IRODS Lustre Framework - Example

[root@zfsl ~]

[root@zfsl bld]
/tempZone/lustre:
C- /tempZone/lustre/dirl

[root@zfsl bld]
/tempZone/lustre:
testfile.txt
C- /tempZone/lustre/dirl

[root@zfsl bld]
this is a test

[root@zfsl bld]

[root@zfsl bld]

AVUs defined for dataObj testfile.txt:
attribute: description

value: just a test file

units:

attribute: lustre identifier

value: 0x20000cf21:0x3:0x0

units:

[root@zfsl bld]

[root@zfsl bld]

/tempZone/lustre/dirl:
testd.txt
testfile.txt

IRODS Lustre Framework - Configuration

{

"mdtname": "lustre01l-MDTO0000",

"lustre root path": "/lustreOl",

"irods register path": "/tempZone/lustre",

"irods resource name": "demoResc",

"irods api update type", "policy",

"log level": "LOG INFO",

"changelog poll interval seconds": 1,

"irods client connect failure retry seconds": 30,

"irods client broadcast address": "ipc:///irods client broadcast events",
"changelog reader broadcast address": "ipc:///changelog reader broadcast events",
"changelog reader push work address": "ipc:///changelog reader push work events",
"result accumulator push address": "ipc:///result accumulator push address",

"irods updater thread count": 5,

"maximum records per update to irods": 200,

"maximum records to receive from lustre changelog": 500,
"message receive timeout msec": 2000,

"thread 1 connection parameters": {
"irods host": "localhost",
"irods port": "1247"

}r

"thread 2 connection parameters": {
"irods host": "localhost",
"irods port": "1247"

}

Notable Configuration Entries

e MDT Name

* Mount Point Available to iRODS

* Registration Point in iRODS

* Multiple iRODS Endpoints - If not defined, use iRODS environment

23

IRODS Automated Ingest Capability

e Based on Redis for distributed job scheduling

e Designed to solve two particular use cases:
m Onboarding of existing body of data

o discovery and registration of files into iRODS catalog
o on-the-fly metadata extraction
o does not rely on the Lustre changelog

m Disaster recovery

o can be run periodically to sync iRODS catalog with Lustre MDS

o does not rely on the Lustre changelog

24

Goal:

IRODS - Parallel and Distributed, Front-to-Back

e Parallel Filesystem
e Automated Ingest Capability
e iRODS

= with multipart, soon

= with distributed database plugin

e Auditing Framework

e Indexing Framework

25

IRODS CockroachDB Database Plugin

e CockroachDB is a distributed database which
supports an SQL query interface.

e With CockroachDB, iRODS may have multiple
catalog (database) providers within an iRODS grid.

e The iRODS Lustre connector allows you to assign
different endpoints to different threads.

e When used with CockroachDB, this allows
horizontal scaling of processing Lustre updates
without encountering a bottleneck at the database.

26

iRODS Lustre Framework - Demonstration

Copy 1000 files into Lustre

cp -r /1000files /lustre0Ol/
[root@zfsl lustreOl]# ils
/tempZone/lustre:
C- /tempZone/lustre/1000files
iquest "select count(DATA NAME)"
DATA NAME = 1000
ils 1000files
/tempZone/lustre/1000files:
C- /tempZone/lustre/1000files/dirl
C- /tempZone/lustre/1000files/dirl0
C- /tempZone/lustre/1000files/dir2
C- /tempZone/lustre/1000files/dir3
C- /tempZone/lustre/1000files/dir4
C- /tempZone/lustre/1000files/dir5
C- /tempZone/lustre/1000files/dir6
C- /tempZone/lustre/1000files/dir7
C- /tempZone/lustre/1000files/dir8
C- /tempZone/lustre/1000files/dir9
ils 1000files/dirl ‘ head -10
/tempZone/lustre/1000files/dirl:
filel
fileloO
filel00
filell
filel2
filel3
fileld
filel5s
filelé6

27

iRODS Lustre Framework - Demonstration

Enable policy

"mdtname": "lustre0l-MDT0000",
"lustre root path": "/lustreOl",

"irods register path": "/tempZone/lustre",
"irods resource name": "demoResc",

"irods api update type", "policy",

Enable a rule to extract metadata from
image files on registration

acPostProcForFilePathReg {

*err = errormsg(msiExecCmd("read exif.py", $filePath, "null", "null", "null",

msiGetStdoutInExecCmdOut (*std _out err,*std out);
writeLine("serverLog", "XXXX - STDOUT [*std out]")

if(*err != 0) {
writeLine("serverLog", "FAILED: [*cmd opt] [*err] [*msg]")
failmsg(*err,*cmd opt)

} else {
msiString2KeyValPair(*std out, *kvp)
msiSetKeyValuePairsToObj (*kvp, $objPath, "-d")

}

*std _out _err),

*msqg)

28

iRODS Lustre Framework - Demonstration

Enable Policy and Use a Rule to Extract
Metadata

cp ~/images/stickers.jpg .

imeta ls -d stickers.jpg | head -20
AVUs defined for dataObj stickers.jpg:
attribute: Image Orientation

value: Horizontal (normal)

units:

attribute: EXIF ColorSpace

value: sRGB

units:

attribute: lustre identifier

value: 0x20000cf24:0x14b74:0x0

units:

attribute: EXIF FNumber

value: 11/5

units:

attribute: GPS GPSDestBearingRef
value: T

units:

29

