
OST data migrations using
ZFS snapshot/send/receive

Tom Crowe
Research Technologies
High Performance File Systems
hpfs-admin@iu.edu
Indiana University

Abstract

Data migrations can be time consuming and tedious, often requiring large
maintenance windows of downtime. Some common reasons for data migrations
include aging and/or failing hardware, increases in capacity, and greater
performance. Traditional file and block based “copy tools” each have pros and
cons, but the time to complete the migration is often the core issue. Some file
based tools are feature rich, allowing quick comparisons of date/time stamps,
or changed blocks inside a file. However examining multiple millions, or even
billions of files takes time. Even when there is little no no data churn, a final
"sync" may take hours, even days to complete, with little data movement. Block
based tools have fairly predictable transfer speeds when the block device is
otherwise "idle", however many block based tools do not allow "delta" transfers.
The entire block device needs to be read, and then written out to another block
device to complete the migration

Abstract - continued

ZFS backed OST’s can be migrated to new hardware or to existing
reconfigured hardware, by leveraging ZFS snapshots and ZFS send/receive
operations. The ZFS snapshot/send/receive migration method leverages
incremental data transfers, allowing an initial data copy to be "caught up" with
subsequent incremental changes. This migration method preserves all the ZFS
Lustre properities (mgsnode, fsname, network, index, etc), but allows the
underlying zpool geometry to be changed on the destination. The rolling ZFS
snapshot/send/receive operations can be maintained on a per OST basis,
allowing granular migrations.

Abstract - continued

This migration method greatly reduces the final "sync" downtime, as rolling
snapshot/send/receive operations can be continuously run, thereby pairing
down the delta's to the smallest possible amount. There is no overhead to
examine all the changed data, as the snapshot "is" the changed data.
Additionally, the final sync can be estimated from previous
snapshot/send/receive operations, which supports a more accurate downtime
window.

This presentation will overview how Indiana University is leveraging ZFS
snapshots and ZFS send/receive to migrate OST data.

Abstract - highlights

• ZFS snap/send/receive is another tool in the tool box: not right for every job
• ZFS snap/send/receive can reduce “final sync” downtime(s)
• OST/Lustre data/structure remains the same; ZFS data is rebuilt
• Migrate from older hardware to newer hardware
• Change zpool geometry (via migration)

Reasoning

• Migrated with file based tools, millions of tiny files, very old hardware
• Months of effort
• Final sync/cutover was still very long with little data movement
• ZFS was the intended target
• Looking for a “better way” the next time

Production Environment Overview

(2) MDS (4) OSS
• MDS active/passive for manual failover
• OSS active/active w/manual failover to any node
• Bare Metal HW
• Centos 6.8, Lustre 2.8.0, ZFS 0.6.5.2-1
• MDT and OST’s are HW raid

MDS01

MDT

MDS02 OSS01 OSS02 OSS03 OSS04

OST

Demo Environment Overview

(1) MDS (2) OSS
• Built from same XCAT postscripts as production
• KVM Guests (virtual)
• Centos 6.8, Lustre 2.8.0, ZFS 0.6.5.2-1
• MDT and OST’s are ZFS raid

MDS01

MDT

OSS01 OSS02

OST OST

Basic OST Migration

zpool-2	(destination)

Basic OST Migration

1. Take a snapshot of source OST
2. Transport the OST snapshot (initial full copy) via zfs send/receive
3. Repeat snapshot/send/receive (incremental)
4. Clean up old snapshots along the way

zpool-1	(source)

OST1
OST1
Snapshot-

1

receive																								=send
OST1
Snapshot-

1
Replicated

OST1
replicated

OST1
Snapshot-

2

receive	incrementalsend	incremental

OST1
Snapshot-

2
Replicated

X X

zpool-2	(destination)

Basic OST Migration - continued

5. Stop Lustre (unmount OST)
6. Final snapshot/send/receive
7. Edit /etc/ldev.conf, start “new” device (mount)

zpool-1	(source)

OST1
OST1
Final	

Snapshot

OST1
Final	

Snapshot
Replicated

OST1
replicated

receive	incrementalsend	incremental

/mnt/lustre/local/OST0001	

zpool-1/OST1 zpool-2/OST1_rep

Basic OST Migration – example
Freshly formatted demo file system, two OSTs, no data yet

[root@demo_oss01 ~]# df -hP
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vg00-lv01 16G 4.4G 11G 30% /
tmpfs 939M 0 939M 0% /dev/shm
/dev/sda1 488M 84M 379M 19% /boot
/dev/sda2 488M 396K 462M 1% /boot-rcvy
/dev/mapper/vg00-lv00 976M 1.3M 924M 1% /rcvy
/dev/mapper/vg00-lv05 2.0G 11M 1.8G 1% /scratch
/dev/mapper/vg00-lv03 976M 199M 727M 22% /var
/dev/mapper/vg00-lv02 976M 1.3M 924M 1% /var-rcvy
osspool-01/ost-demo17-0000 3.8G 2.2M 3.8G 1% /mnt/lustre/local/demo-OST0000
osspool-02/ost-demo17-0001 3.9G 2.0M 3.9G 1% /mnt/lustre/local/demo-OST0001

Basic OST Migration – example
Minimum inodes.

[root@demo_oss01 ~]# df -i
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/mapper/vg00-lv01

1048576 72178 976398 7% /
tmpfs 240240 1 240239 1% /dev/shm
/dev/sda1 32768 46 32722 1% /boot
/dev/sda2 32768 11 32757 1% /boot-rcvy
/dev/mapper/vg00-lv00 65536 11 65525 1% /rcvy
/dev/mapper/vg00-lv05 131072 13 131059 1% /scratch
/dev/mapper/vg00-lv03 65536 1540 63996 3% /var
/dev/mapper/vg00-lv02 65536 11 65525 1% /var-rcvy
osspool-01/ost-demo17-0000

139995 223 139772 1% /mnt/lustre/local/demo-OST0000
osspool-02/ost-demo17-0001

141747 223 141524 1% /mnt/lustre/local/demo-OST0001

Basic OST Migration – example
Change record size in zfs dataset from default 128k to 1k, so we can squeeze lots of little files.

[root@demo_oss01 ~]# zfs get recordsize osspool-01/ost-demo17-0000
NAME PROPERTY VALUE SOURCE
osspool-01/ost-demo17-0000 recordsize 128K default

[root@demo_oss01 ~]# zfs set recordsize=1k osspool-01/ost-demo17-0000
[root@demo_oss01 ~]# zfs set recordsize=1k osspool-02/ost-demo17-0001

[root@demo_oss01 ~]# zfs get recordsize osspool-01/ost-demo17-0000
NAME PROPERTY VALUE SOURCE
osspool-01/ost-demo17-0000 recordsize 1K local

Basic OST Migration – example
After creating a million tiny files (less than 1kb each)

[root@demo_client ~]# lfs df -h ; lfs df -i
UUID bytes Used Available Use% Mounted on
demo17-MDT0000_UUID 2.8G 1.3G 1.5G 46% /mnt/demo17[MDT:0]
demo17-OST0000_UUID 3.8G 1.7G 2.0G 47% /mnt/demo17[OST:0]
demo17-OST0001_UUID 3.8G 1.9M 3.8G 0% /mnt/demo17[OST:1]

filesystem summary: 7.6G 1.7G 5.8G 23% /mnt/demo17

UUID Inodes IUsed IFree IUse% Mounted on
demo17-MDT0000_UUID 1428288 1025216 403072 72% /mnt/demo17[MDT:0]
demo17-OST0000_UUID 3160758 1034687 2126071 33% /mnt/demo17[OST:0]
demo17-OST0001_UUID 3998782 223 3998559 0% /mnt/demo17[OST:1]

filesystem summary: 1428288 1025216 403072 72% /mnt/demo17

Basic OST Migration – example
Check destination zpool has enough free space (source was 1.9GB)

[root@demo_oss01 ~]# zfs list
NAME USED AVAIL REFER MOUNTPOINT
osspool-01 1.75G 2.04G 27.2K /osspool-01
osspool-01/ost-demo17-0000 1.75G 2.04G 1.75G /osspool-01/ost-demo17-0000
osspool-02 1.99M 3.83G 24.0K /osspool-02
osspool-02/ost-demo17-0001 1.89M 3.83G 1.89M /osspool-02/ost-demo17-0001

[root@demo_oss01 ~]# zpool list
NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
osspool-01 4.91G 2.20G 2.71G - 76% 44% 1.00x ONLINE -
osspool-02 5.94G 3.01M 5.93G - 0% 0% 1.00x ONLINE -

Basic OST Migration – example
Check for existing snapshots. Take a snapshot. Use a meaningful snapname (date/time)

[root@demo_oss01 ~]# zfs list -t snap
no datasets available

[root@demo_oss01 ~]# zfs snap osspool-01/ost-demo17-0000@`date +%Y%m%d-%H%M%S`

[root@demo_oss01 ~]# zfs list -t snap
NAME USED AVAIL REFER MOUNTPOINT
osspool-01/ost-demo17-0000@20170509-102649 0 - 1.75G -

Basic OST Migration – example
Initial zfs send is a “full” copy. Use –R (replication stream) in zfs send. DON’T SEND TO SAME POOL

[root@demo_oss01 ~]# zfs send -Rv osspool-01/ost-demo17-0000@20170509-102649 | zfs
receive osspool-02/ost-demo17-0000_replicated
send from @ to osspool-01/ost-demo17-0000@20170509-102649 estimated size is 1.20G
total estimated size is 1.20G
TIME SENT SNAPSHOT
10:29:00 149M osspool-01/ost-demo17-0000@20170509-102649
10:29:01 206M osspool-01/ost-demo17-0000@20170509-102649
10:29:02 247M osspool-01/ost-demo17-0000@20170509-102649
...
11:03:34 1.99G osspool-01/ost-demo17-0000@20170509-102649
11:03:35 1.99G osspool-01/ost-demo17-0000@20170509-102649
11:03:37 1.99G osspool-01/ost-demo17-0000@20170509-102649
[root@demo_oss01 ~]#

Basic OST Migration – example
Results following initial snap/send/receive

[root@demo_oss01 ~]# zfs list -t snap
NAME USED AVAIL REFER MOUNTPOINT
osspool-01/ost-demo17-0000@20170509-102649 620K - 1.75G -
osspool-02/ost-demo17-0000_replicated@20170509-102649 0 - 1.48G -

[root@demo_oss01 ~]# zfs list
NAME USED AVAIL REFER MOUNTPOINT
osspool-01 1.77G 2.03G 27.2K /osspool-01
osspool-01/ost-demo17-0000 1.76G 2.03G 1.76G /osspool-01/ost-demo17-0000
osspool-02 3.00G 846M 24.0K /osspool-02
osspool-02/ost-demo17-0000_replicated 1.48G 846M 1.48G /osspool-02/ost-demo17-
0000_replicated
osspool-02/ost-demo17-0001 1.52G 846M 1.52G /osspool-02/ost-demo17-0001

Basic OST Migration – example
Take a subsequent snapshot. Use a meaningful snapname (date/time)

[root@demo_oss01 ~]# zfs snap osspool-01/ost-demo17-0000@`date +%Y%m%d-%H%M%S`

[root@demo_oss01 ~]# zfs list -t snap
NAME USED AVAIL REFER MOUNTPOINT
osspool-01/ost-demo17-0000@20170509-102649 620K - 1.75G -
osspool-01/ost-demo17-0000@20170509-130143 0 - 1.76G -
osspool-02/ost-demo17-0000_replicated@20170509-102649 0 - 1.48G -

Basic OST Migration – example
Subsequent zfs send is a “incremental” (only changes between snapshots sent). Use –R and –i for incremental

[root@demo_oss01 ~]#zfs send -Rv -i osspool-01/ost-demo17-0000@20170509-102649 osspool-
01/ost-demo17-0000@20170509-130143 | zfs receive osspool-02/ost-demo17-0000_replicated
send from @20170509-102649 to osspool-01/ost-demo17-0000@20170509-130143 estimated size
is 8.72M
total estimated size is 8.72M
TIME SENT SNAPSHOT
13:09:36 322K osspool-01/ost-demo17-0000@20170509-130143

Basic OST Migration – example
Remove old snapshots, review current snapshot

[root@demo_oss01 ~]# zfs destroy osspool-01/ost-demo17-0000@20170509-102649
(DOES NOT CONFIRM, IT JUST DELETES IT)
[root@demo_oss01 ~]# zfs destroy osspool-02/ost-demo17-0000_replicated@20170509-102649

[root@demo_oss01 ~]# zfs list -t snap
[root@demo_oss01 lustre]# zfs list -t snap
NAME USED AVAIL REFER MOUNTPOINT
osspool-01/ost-demo17-0000@20170509-130143 255M - 1.76G -
osspool-02/ost-demo17-0000_replicated@20170509-130143 0 - 1.49G -

Basic OST Migration – example
Stop the OST, import zpool (if necessary), create final snapshot

[root@demo_oss01 ~]# grep OST0000 /etc/ldev.conf
demo_oss01 - demo-OST0000 zfs:osspool-02/ost-demo17-0000

[root@demo_oss01 ~]# service lustre stop demo-OST0000
Unmounting /mnt/lustre/local/demo-OST0000

[root@demo_oss01 ~]# zpool import osspool-01

[root@demo_oss01 ~]# zfs snap osspool-01/ost-demo17-0000@`date +%Y%m%d-%H%M%S`
[root@demo_oss01 ~]# zfs list -t snap
NAME USED AVAIL REFER MOUNTPOINT
osspool-01/ost-demo17-0000@20170509-130143 270M - 1.76G -
osspool-01/ost-demo17-0000@20170510-094747 0 - 1.77G -
osspool-02/ost-demo17-0000_replicated@20170509-130143 0 - 1.49G -

Basic OST Migration – example
Subsequent zfs send is a “incremental” (only changes between snapshots sent). Use –R and –I for incremental

[root@demo_oss01 ~]# zfs send -Rv -i osspool-01/ost-demo17-0000@20170509-130143
osspool-01/ost-demo17-0000@20170510-094747 | zfs receive osspool-02/ost-demo17-
0000_replicated

send from @20170509-130143 to osspool-01/ost-demo17-0000@20170510-094747 estimated size
is 192M
total estimated size is 192M
TIME SENT SNAPSHOT
09:50:42 1.61M osspool-01/ost-demo17-0000@20170510-094747
09:50:43 48.7M osspool-01/ost-demo17-0000@20170510-094747
09:50:44 53.6M osspool-01/ost-demo17-0000@20170510-094747
...
09:52:51 381M osspool-01/ost-demo17-0000@20170510-094747
09:52:52 382M osspool-01/ost-demo17-0000@20170510-094747
09:52:53 383M osspool-01/ost-demo17-0000@20170510-094747

Basic OST Migration – example
Modify /etc/ldev.conf to reflect “new” OST, start OST

[root@demo_oss01 ~]# grep OST0000 /etc/ldev.conf
demo_oss01 - demo-OST0000 zfs:osspool-02/ost-demo17-
0000_replicated

[root@demo_oss01 ~]# service lustre start demo-OST0000
Mounting osspool-02/ost-demo17-0000_replicated on /mnt/lustre/local/demo-OST0000

Basic OST Migration – review

1. identify sources, destination and existing snaps
• zfs list ; zpool list ; zfs list –t snap

2. take a snapshot
• zfs snap src_zpool/vdev@snapname1

3. transport “full” snapshot
• zfs send -Rv src_zpool/vdev@snapname1 | zfs receive dst_zpool/vdev_rep

4. take another snapshot
• zfs snap src_zpool/vdev@snapname2

5. transport “incremental” snapshot
• zfs send -Rv -i src_zpool/vdev@snapname1 src_zpool/vdev@snapname2 | zfs

receive dst_zpool/vdev_rep

6. clean up old snapshots
• zfs destroy src_zpool/vdev@snapname1

Basic OST Migration – review

7. Repeat steps 4, 5 and 6 as long as needed until “final sync”
8. Stop Lustre

• service lustre stop

9. repeat steps 4 and 5 (snap, send/receive)
10.Modify/update /etc/ldev.conf with new device
11.Start Lustre

• service lustre start

Don‘t forget to cleanup/remove old snaps and source OST

Basic OST Migration – Summary

• The rhythm is snap, send/receive, destroy until the “final sync”.
• For final sync, stop Lustre/OST, then snap, send/receive, start Lustre/OST
• There are performance and capacity impacts; its not magic.

• Zpool capacity needs to be monitored
• IO overhead for ZFS snap/send/receive and destroy
• Zpool iostat can monitor activity

• Efficient transport of incremental changes
• This is appropriate for:

• “controlled” downtime
• Back end storage changes (capacity, age, speed)
• Zpool geometry changes

Basic OST Migration – ZFS vs rsync
comparison on demo environment

Initial full ZFS snap/send/receive takes ~34 minutes

TIME SENT SNAPSHOT
10:29:00 149M osspool-01/ost-demo17-0000@20170509-102649
10:29:01 206M osspool-01/ost-demo17-0000@20170509-102649
10:29:02 247M osspool-01/ost-demo17-0000@20170509-102649
...
11:03:34 1.99G osspool-01/ost-demo17-0000@20170509-102649
11:03:35 1.99G osspool-01/ost-demo17-0000@20170509-102649
11:03:37 1.99G osspool-01/ost-demo17-0000@20170509-102649

Basic OST Migration – ZFS vs rsync
comparison on demo environment

Initial full rsync of the same data takes ~92 minutes

rsync -azh --no-whole-file . ${DEST}/

Basic OST Migration – ZFS vs rsync
comparison on demo environment

0

10

20

30

40

50

60

70

80

90

100

zfs	snap/send/receive rsync

M
in
ut
es

Initial	(full)	copy

3	x	longer

Basic OST Migration – ZFS vs rsync
comparison on demo environment

Subsequent incremental ZFS snap/send/receive takes ~2 minutes
~150,000 files were appended to (8 bytes)

TIME SENT SNAPSHOT
09:50:42 1.61M osspool-01/ost-demo17-0000@20170510-094747
09:50:43 48.7M osspool-01/ost-demo17-0000@20170510-094747
09:50:44 53.6M osspool-01/ost-demo17-0000@20170510-094747
...
09:52:51 381M osspool-01/ost-demo17-0000@20170510-094747
09:52:52 382M osspool-01/ost-demo17-0000@20170510-094747
09:52:53 383M osspool-01/ost-demo17-0000@20170510-094747

Basic OST Migration – ZFS vs rsync
comparison on demo environment

Subsequent incremental rsync of the same data takes ~101 minutes

rsync -azh --no-whole-file . ${DEST}/

Basic OST Migration – ZFS vs rsync
comparison on demo environment

0

20

40

60

80

100

120

zfs	snap/send/receive rsync

M
in
ut
es

Subsequent	(Incremental)	copy

50	x	longer

Lessons Learned

• Rsync is a great tool, but it has to “examine” every file which can be
expensive with old hardware and/or millions or billions of files (lots of
metadata calls)

• ZFS snap/send/receive operates underneath Lustre, there are zero
metadata calls

• In a extremely high data rate of change (churn), incremental ZFS
snap/send/receive may be inefficient. Snapshots can grow larger than initial
OST, zpools can fill up.

• The right tool for the right job. ZFS snap/send/receive is another tool you
can use, but might not be the right one.

Futures

• Today, IU’s production ZFS file system uses zpool concatenation of
hardware raid devices. ZFS manages, but does not error correct.

• ZFS snap/send/receive will be used to migrate the above hardware
protected OSTs, onto totally JBOD based zpools when hardware raid device
is retired

• ZFS snap/send/receive will be used to migrate OSTs in between zpools, for
performance balancing.

• ZFS snap/send/receive can be used for offline copy of an OST for further
project research (Zester)

References and Acknowledgements

• http://open-zfs.org/wiki/Main_Page
• https://pthree.org/2012/04/17/install-zfs-on-debian-gnulinux/

• Brian Behlendorf
• Chris Morrone
• Marc Stearman
• Andreas Dilger

Questions?

