
Increasing Performance Through 

Automated Contention Management
(LUG’16)

Yan Li, Xiaoyuan Lu,

Ethan Miller, Darrell Long
Storage Systems Research Center (SSRC)

University of California, Santa Cruz

(a Intel® Parallel Computing Center)



Challenge: consistent performance at peak times

congestion harms efficiency and throughput

2

100 

clients

150 

clients

200 

clients

to
ta

l 
th

ro
u
g
h
p
u
t



Challenge: consistent performance at peak times

3

client throughput 

of a random write 

workload

5 nodes accessing 

5 servers

congestion causes fluctuation



Challenge: consistent performance at peak times

4

congestion can occur anywhere in the cluster



The problem we are trying to solve

5
Picture credit:

https://www.checkfelix.com/reiseblog/10-argumente-urlaub-schottland/



The problem we are trying to solve

Improve throughput or fairness during congestion
or both at the same time!

End-to-end coverage
handling congestion at OSC, network, OSS, and OST

Fully automatic and requires little human effort
modern systems are very dynamic, and we won’t have time to 

create models

6



Rate limiting can improve performance

7

100 

clients
150 

clients

200 

clients

… if done properly
to

ta
l 
th

ro
u
g
h
p
u
t

200 clients

with contention 

control



8

real 

throughput

ideal 

throughput

Challenges of distributed I/O rate control:

1. Where is the sweet spot?

rate limit



9

real 

throughput

ideal 

throughput

Challenges of distributed I/O rate control:

1. Where is the sweet spot?

rate limit

is too low



10

real 

throughput

ideal 

throughput

Challenges of distributed I/O rate control:

1. Where is the sweet spot?

rate limit

too high



11

real 

throughput

ideal 

throughput

Challenges of distributed I/O rate control:

1. Where is the sweet spot?

sweet rate 

limit spotCapability discovery 

usually involves 

communication:

• between clients

• with a central controller



12

Challenges of distributed I/O rate control:

2. scalability

Intra-node communication can grow at O(n2)

Adds overhead to already congested network

Low responsiveness for highly dynamic workload



ASCAR: Automatic Storage Contention Alleviation and Reduction

Client-side rule-based I/O rate control
1. no need for central scheduling or coordination, nimble and highly 

responsive

2. no need to change server software or hardware

3. no scale-up bottleneck

Use machine learning and heuristics for rule generation 

and optimization
no prior knowledge of the system or workload is required

13



Components of the ASCAR prototype

14

Legends: 

Traffic rules 

ASCAR traffic controller 

Client node 

Application 

File system client 

Storage servers 

ASCAR Rule 

Manager 
Workload 

Character 

& Rule Set 

Database 

Workload 

Classifier 

Rule 

Generator & 

Optimizer 

(SHARP) 
traffic 

rules 

Workload character markers 



Legends: 

Traffic rules 

ASCAR traffic controller 

Client node 

Application 

File system client 

Storage servers 

ASCAR Rule 

Manager 
Workload 

Character 

& Rule Set 

Database 

Workload 

Classifier 

Rule 

Generator & 

Optimizer 

(SHARP) 
traffic 

rules 

Workload character markers 

Components of the ASCAR prototype

15



Legends: 

Traffic rules 

ASCAR traffic controller 

Client node 

Application 

File system client 

Storage servers 

ASCAR Rule 

Manager 
Workload 

Character 

& Rule Set 

Database 

Workload 

Classifier 

Rule 

Generator & 

Optimizer 

(SHARP) 
traffic 

rules 

Workload character markers 

Components of the ASCAR prototype

16



Rule-based Contention Control

Rules tell the controller how to react to congestions
tweak the congestion window according to request processing latency

Each client tracks three congestion state statistics
(ack_ewma, send_ewma, pt_ratio)

Each rule maps a congestion state to an action
(Congestion State (CS) statistics) → <action>

An action describes how to change the congestion window 
(max_rpcs_in_flight) and rate limit:<m, b, τ>
new_cong_window = m × cong_window + b
τ is the rate limit

17



Generating a rule set for a certain workload

Extract a short signature workload that covers the 
important features of the application’s I/O workload
a signature workload is usually 20 ~ 30 seconds long

Generate candidate rules and benchmark them with the 
signature workload on the real system
test possible combinations of action variables

Split the hottest rule in the set to generate more rules
structural improve vs. tuning parameters

19



Begin with one rule: the whole state space maps to 

one action

20

Action

<m, b, τ>

ack_ewma

p
t_

ra
io

0,0
INT_MAX

IN
T

_
M

A
X



Try different values of <m, b, τ> with the workload

21

Try the Cartesian product of:

{m ± 0.01, m ± 0.02, m ± 0.04, … }

×

{b ± 0.01, b ± 0.02, b ± 0.04, … }

×

{ τ ± 1, τ ± 2, τ ± 4, … }

ack_ewma

p
t_

ra
io

0,0
INT_MAX

IN
T

_
M

A
X



Find the rule that yields highest performance

22

Action

<0.9, 1, 121>

ack_ewma

p
t_

ra
io

0,0
INT_MAX

IN
T

_
M

A
X



Split the state space at the most observed state 

values

23ack_ewma

p
t_

ra
io

0,0
INT_MAX

IN
T

_
M

A
X

Action

<0.9, 1, 121>

Action

<0.9, 1, 121>

Action

<0.9, 1, 121>

Action

<0.9, 1, 121>



Run the workload, find out the rules that was 

triggered most often

24ack_ewma

p
t_

ra
io

0,0
INT_MAX

IN
T

_
M

A
X

Action

<0.9, 1, 121>

used 32k times

Action

<0.9, 1, 121>

used 0.3k times

Action

<0.9, 1, 121>

used 2k times

Action

<0.9, 1, 121>

used 120 times



Improve the most used rules by sweeping all possible 

values of <m, b, τ>

25ack_ewma

p
t_

ra
io

0,0
INT_MAX

IN
T

_
M

A
X

Try the Cartesian product of:

{m ± 0.01, m ± 0.02, m ± 0.04, … 

}

×

{b ± 0.01, b ± 0.02, b ± 0.04, … }

×

{ τ ± 1, τ ± 2, τ ± 4, … }

Action

<0.9, 1, 121>

Action

<0.9, 1, 121>

Action

<0.9, 1, 121>



Find the action that works best

26ack_ewma

p
t_

ra
io

0,0
INT_MAX

IN
T

_
M

A
X

Action

<1.1, 1.5, 80>

Action

<0.9, 1, 121>

Action

<0.9, 1, 121>

Action

<0.9, 1, 121>



Split the most used rule’s state space at the most 

observed state values

27ack_ewma

p
t_

ra
io

0,0

IN
T

_
M

A
X

Action

<0.9, 1, 121>

Action

<0.9, 1, 121>

Action

<0.9, 1, 121>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 80>

INT_MAX



Run workload, find the most used rule, and improve 

it

28ack_ewma

p
t_

ra
io

0,0

IN
T

_
M

A
X

Action

<0.5, -1, 30>

Action

<0.9, 1, 121>

Action

<0.9, 1, 121>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 80>

INT_MAX



After find the best action, split the most used rule

29ack_ewma

p
t_

ra
io

0,0

IN
T

_
M

A
X

Action

<0.9, 1, 121>

Action

<0.9, 1, 121>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 80>

INT_MAX

Action

<0.5, -1, 

30>

Action

<0.5, -1, 30>

Action

<0.5, -1, 

30>

Action

<0.5, -1, 30>



After find the best action, split the most used rule

30ack_ewma

p
t_

ra
io

0,0

IN
T

_
M

A
X

Action

<0.9, 1, 121>

Action

<0.9, 1, 121>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 80>

INT_MAX

Action

<0.5, -1, 

30>

Action

<0.5, -1, 30>

Action

<0.5, -1, 

30>

Action

<0.5, -1, 30>



Repeat this process

31ack_ewma

p
t_

ra
io

0,0

IN
T

_
M

A
X

Action

<0.9, 1, 121>

Action

<0.9, 1, 121>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 80>

INT_MAX

Action

<0.5, -1, 

30>

Action

<0.5, -1, 30>

Action

<0.5, -1, 

30>

Action

<0.5, -1, 30>

Action

<1.1, 1.5, 80>

Action

<2, 1, 

10>

Action

<1.1, 1.5, 80>

Action

<1.1, 1.5, 

80>



Prototype and Evaluation

An ASCAR prototype for Lustre

Patched Lustre client to add congestion control
no change to server or other parts

Hardware: 5 servers, 5 clients
Intel Xeon CPU E3-1230 V2 @ 3.30GHz, 16 GB RAM,
Intel 330 SSD for the OS,
dedicated 7200 RPM HGST Travelstar Z7K500 hard drive for 
Lustre,
Gigabit Ethernet

32



ASCAR is good at increasing throughout and 

decreasing speed variance

33



34

Seq. read 

Seq. write 

Random read 

Random write 

Random r/w 

BTIO (B4) 

BTIO (C4) 

Random write 
BTIO (B4) 

BTIO (C4) 

-60.00% 

-50.00% 

-40.00% 

-30.00% 

-20.00% 

-10.00% 

0.00% 

10.00% 

20.00% 

30.00% 

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 

S
p

e
e
d

 v
a
ri

a
n
ce

 c
h
a
n
g
e
 

Throughput improvement 

Workload Throughput Improvements 

TP only 

TP and Var 



Seq. read 

Seq. write 

Random read 

Random write 

Random r/w 

BTIO (B4) 

BTIO (C4) 

Random write 
BTIO (B4) 

BTIO (C4) 

-60.00% 

-50.00% 

-40.00% 

-30.00% 

-20.00% 

-10.00% 

0.00% 

10.00% 

20.00% 

30.00% 

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 

S
p

e
e
d

 v
a
ri

a
n
ce

 c
h
a
n
g
e
 

Throughput improvement 

Workload Throughput Improvements 

TP only 

TP and Var 

35

Higher throughput



Seq. read 

Seq. write 

Random read 

Random write 

Random r/w 

BTIO (B4) 

BTIO (C4) 

Random write 
BTIO (B4) 

BTIO (C4) 

-60.00% 

-50.00% 

-40.00% 

-30.00% 

-20.00% 

-10.00% 

0.00% 

10.00% 

20.00% 

30.00% 

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 

S
p

e
e
d

 v
a
ri

a
n
ce

 c
h
a
n
g
e
 

Throughput improvement 

Workload Throughput Improvements 

TP only 

TP and Var 

36

Lower speed variance



Seq. read 

Seq. write 

Random read 

Random write 

Random r/w 

BTIO (B4) 

BTIO (C4) 

Random write 
BTIO (B4) 

BTIO (C4) 

-60.00% 

-50.00% 

-40.00% 

-30.00% 

-20.00% 

-10.00% 

0.00% 

10.00% 

20.00% 

30.00% 

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 

S
p

e
e
d

 v
a
ri

a
n
ce

 c
h
a
n
g
e
 

Throughput improvement 

Workload Throughput Improvements 

TP only 

TP and Var 

37



Seq. read 

Seq. write 

Random read 

Random write 

Random r/w 

BTIO (B4) 

BTIO (C4) 

Random write 
BTIO (B4) 

BTIO (C4) 

-60.00% 

-50.00% 

-40.00% 

-30.00% 

-20.00% 

-10.00% 

0.00% 

10.00% 

20.00% 

30.00% 

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 

S
p

e
e
d

 v
a
ri

a
n
ce

 c
h
a
n
g
e
 

Throughput improvement 

Workload Throughput Improvements 

TP only 

TP and Var 

38



Our prototype shows that …

ASCAR increases the performance of all workloads
2% to 36%

ASCAR works best to boost write-heavy workloads
25% to 36%

ASCAR can lower speed variance at the same time for 

certain workloads
by more than 50%

39



Limitations

Training is currently offline

The offline training can take hours

Need to re-train when workload changes

40



Handling a new workload without training

Measure the workload’s features

Compare features with known workloads

Find the most similar known workload and use its 

contention control rules

41



Legends: 

Traffic rules 

ASCAR traffic controller 

Client node 

Application 

File system client 

Storage servers 

ASCAR Rule 

Manager 
Workload 

Character 

& Rule Set 

Database 

Workload 

Classifier 

Rule 

Generator & 

Optimizer 

(SHARP) 
traffic 

rules 

Workload character markers 

Components of the ASCAR prototype

42



Finding the right features

Workloads can have radically different pressure on the 

underlying system
they require different congestion control rules

The features should reflect the workload’s pressure on 

the underlying system

The combined workload from many clients is a mix of 

read/write and random/sequential

43



A 75% sequential + 25% random workload can 

be very different from another

Request

p

Request

p + 120

Request

p + 100

Request

p + 101

Request

p + 121

Request

p + 122

Request

p + 200

Request

p + 201

Request

p

Request

p + 3

Request

p + 1

Request

p + 2

Request

p + 4

Request

p + 100

Request

p + 200

Request

p + 351

Random requests



And there are many different

60% read + 40% write workloads out there

Read Write

Read Write Read

Read ReadWrite Write WriteRead Read



The feature set we use

Op type: read/write/metadata

Ratios between ops (read to write, read/write to 

metadata, etc.)

For each type of op, we measure the following features:

1. average size of sequential ops

2. average positional gap between seq. ops

3. average temporal gap between seq. ops



Sample:

Different 60% read + 40% write workloads

Read Write

Read ReadWrite Write WriteRead Read

Read to write: 60/40

Avg. size of sequential read: 60 MB

Avg. size of sequential write: 40 MB

Read to write: 60/40

Avg. size of sequential read: 15 MB

Avg. size of sequential write: 13 MB



Calculating similarity of workloads

Goal: to determine if they can use the same contention 

control rules

How: start from a known workload and tweak its 

features, measuring the efficiency of existing rules on 

the changed workload

Result: we used the results of hundreds of benchmarks 

to generate a decision tree

48



Calculating similarity of workloads

49

rw_ratio 

read_size 
Linear 

model 1 

Linear 

model 2 

Linear 

model 3 

<=7 >7 

<=75 >75 



rw_ratio 

read_size 
Linear 

model 1 

Linear 

model 2 

Linear 

model 3 

<=7 >7 

<=75 >75 

Calculating similarity of workloads

50



This decision tree can precisely predict the 

performance of using a specific rule set with a new 

workload

Correlation coefficient: 0.8676

Mean absolute error: 0.038 

Root mean squared error: 0.0462 

51



Not a Conclusion: ASCAR …

Does not require knowledge of the system or workloads
fully unsupervised

Only needs client-side controllers
no need to change hardware/application/network/server software

Can improve highly changeable workloads
like burst I/O

Work-conserving
no wasted bandwidth

52



Not a Conclusion: ASCAR …

Needs to be evaluated on a larger scale
we are looking for collaborators

Can be evaluated using a patched client (2.4, 2.7)
no need to change server or hardware

53



Not a Conclusion: ASCAR …

Paper and source code of our prototype are published

@ http://ascar.io

54



Future work: online rule optimization

Current ASCAR prototype requires a lengthy offline learning 

process

Use cloud computing services for doing evaluation on a 

larger scale

Online tweaking of rules using random-restart hill climbing

Also need to evaluate the ASCAR algorithm on other 

workloads: database, web services

55



Acknowledgments

This research was supported in part by the National Science Foundation under 

awards IIP-1266400, CCF-1219163, CNS- 1018928, the Department of Energy 

under award DE-FC02- 10ER26017/DESC0005417, Symantec Graduate 

Fellowship, and industrial members of the Center for Research in Storage 

Systems. We would like to thank the sponsors of the Storage Systems Research 

Center (SSRC), including Avago Technologies, Center for Information 

Technology Research in the Interest of Society (CITRIS of UC Santa Cruz), 

Department of Energy/Office of Science, EMC, Hewlett Packard Laboratories, 

Intel Corporation, National Science Foundation, NetApp, Sandisk, Seagate 

Technology, Symantec, and Toshiba for their generous support. 

ASCAR project: http://ascar.io

Contact:
Yan Li <yanli@cs.ucsc.edu>

56


