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Challenge: consistent performance at peak times

congestion harms efficiency and throughput
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Challenge: consistent performance at peak times
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Challenge: consistent performance at peak times
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congestion can occur anywhere in the cluster



The problem we are trying to solve
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The problem we are trying to solve

Improve throughput or fairness during congestion
or both at the same time!

End-to-end coverage
handling congestion at OSC, network, OSS, and OST

Fully automatic and requires little human effort
modern systems are very dynamic, and we won’t have time to 

create models
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Rate limiting can improve performance
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Challenges of distributed I/O rate control:

2. scalability

Intra-node communication can grow at O(n2)

Adds overhead to already congested network

Low responsiveness for highly dynamic workload



ASCAR: Automatic Storage Contention Alleviation and Reduction

Client-side rule-based I/O rate control
1. no need for central scheduling or coordination, nimble and highly 

responsive

2. no need to change server software or hardware

3. no scale-up bottleneck

Use machine learning and heuristics for rule generation 

and optimization
no prior knowledge of the system or workload is required
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Components of the ASCAR prototype
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Rule-based Contention Control

Rules tell the controller how to react to congestions
tweak the congestion window according to request processing latency

Each client tracks three congestion state statistics
(ack_ewma, send_ewma, pt_ratio)

Each rule maps a congestion state to an action
(Congestion State (CS) statistics) → <action>

An action describes how to change the congestion window 
(max_rpcs_in_flight) and rate limit:<m, b, τ>
new_cong_window = m × cong_window + b
τ is the rate limit
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Generating a rule set for a certain workload

Extract a short signature workload that covers the 
important features of the application’s I/O workload
a signature workload is usually 20 ~ 30 seconds long

Generate candidate rules and benchmark them with the 
signature workload on the real system
test possible combinations of action variables

Split the hottest rule in the set to generate more rules
structural improve vs. tuning parameters
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Begin with one rule: the whole state space maps to 

one action
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Try different values of <m, b, τ> with the workload
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Find the rule that yields highest performance
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Split the state space at the most observed state 

values
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Run the workload, find out the rules that was 

triggered most often
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Improve the most used rules by sweeping all possible 

values of <m, b, τ>
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Find the action that works best
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Split the most used rule’s state space at the most 

observed state values
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Run workload, find the most used rule, and improve 

it
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After find the best action, split the most used rule
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After find the best action, split the most used rule
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Repeat this process
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Prototype and Evaluation

An ASCAR prototype for Lustre

Patched Lustre client to add congestion control
no change to server or other parts

Hardware: 5 servers, 5 clients
Intel Xeon CPU E3-1230 V2 @ 3.30GHz, 16 GB RAM,
Intel 330 SSD for the OS,
dedicated 7200 RPM HGST Travelstar Z7K500 hard drive for 
Lustre,
Gigabit Ethernet
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ASCAR is good at increasing throughout and 

decreasing speed variance
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Higher throughput
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Lower speed variance
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Our prototype shows that …

ASCAR increases the performance of all workloads
2% to 36%

ASCAR works best to boost write-heavy workloads
25% to 36%

ASCAR can lower speed variance at the same time for 

certain workloads
by more than 50%
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Limitations

Training is currently offline

The offline training can take hours

Need to re-train when workload changes
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Handling a new workload without training

Measure the workload’s features

Compare features with known workloads

Find the most similar known workload and use its 

contention control rules
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Finding the right features

Workloads can have radically different pressure on the 

underlying system
they require different congestion control rules

The features should reflect the workload’s pressure on 

the underlying system

The combined workload from many clients is a mix of 

read/write and random/sequential
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A 75% sequential + 25% random workload can 

be very different from another
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And there are many different

60% read + 40% write workloads out there

Read Write

Read Write Read

Read ReadWrite Write WriteRead Read



The feature set we use

Op type: read/write/metadata

Ratios between ops (read to write, read/write to 

metadata, etc.)

For each type of op, we measure the following features:

1. average size of sequential ops

2. average positional gap between seq. ops

3. average temporal gap between seq. ops



Sample:

Different 60% read + 40% write workloads

Read Write

Read ReadWrite Write WriteRead Read

Read to write: 60/40

Avg. size of sequential read: 60 MB

Avg. size of sequential write: 40 MB

Read to write: 60/40

Avg. size of sequential read: 15 MB

Avg. size of sequential write: 13 MB



Calculating similarity of workloads

Goal: to determine if they can use the same contention 

control rules

How: start from a known workload and tweak its 

features, measuring the efficiency of existing rules on 

the changed workload

Result: we used the results of hundreds of benchmarks 

to generate a decision tree
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Calculating similarity of workloads
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This decision tree can precisely predict the 

performance of using a specific rule set with a new 

workload

Correlation coefficient: 0.8676

Mean absolute error: 0.038 

Root mean squared error: 0.0462 
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Not a Conclusion: ASCAR …

Does not require knowledge of the system or workloads
fully unsupervised

Only needs client-side controllers
no need to change hardware/application/network/server software

Can improve highly changeable workloads
like burst I/O

Work-conserving
no wasted bandwidth
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Not a Conclusion: ASCAR …

Needs to be evaluated on a larger scale
we are looking for collaborators

Can be evaluated using a patched client (2.4, 2.7)
no need to change server or hardware
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Not a Conclusion: ASCAR …

Paper and source code of our prototype are published

@ http://ascar.io
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Future work: online rule optimization

Current ASCAR prototype requires a lengthy offline learning 

process

Use cloud computing services for doing evaluation on a 

larger scale

Online tweaking of rules using random-restart hill climbing

Also need to evaluate the ASCAR algorithm on other 

workloads: database, web services
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