
COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Scaling Apache Spark
on Lustre

Nicholas Chaimov (U Oregon)
Costin Iancu, Khaled Ibrahim, Shane Canon, Jay Srinivasan (LBNL)

Allen Malony (U Oregon)

Intel Parallel Computing Center – Big Data Support for HPC

“Scaling Spark on HPC Systems” to appear in HPDC 2016

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Data Analytics

 Spark- “fast and general engine for large-scale data
processing”

 Specialized runtime provides for
 Performance ()
 Elastic parallelism
 Resilience

 Improves programmer productivity through
 HLL front-ends (Scala, R, SQL)
 Multiple domain-specific libraries: Streaming, SparkSQL, SparkR, GraphX, Splash,

MLLib, Velox

 Developed for cloud environments, performance “satisfactory”

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Berkeley Data Analytics Stack

From https://amplab.cs.berkeley.edu/software/

BDB

Page
Rank

Collab
Filter

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

HPC Cloud

 Differences in architecture and system design impact
performance
 HPC == Centralized I/O vs. Cloud == Distributed I/O
 Limited scalability in default configuration
 HPC -> storage dominates vs Cloud -> network dominates

 Differences in usage and expectations impact software
design, and ultimately performance
 HPC enables Global Name Spaces
 HPC practices encourage tightly coupled parallelism

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

What’s in Spark?

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Spark

 Central abstraction is the Resilient Distributed Dataset, or
RDD.
 Composed of partitions of data

• which are composed of blocks.
 RDDs are created from other RDDs by applying transformations or

actions.
 Has a lineage specifying how its blocks are computed.
 Requesting a block either retrieves from cache or triggers

computation.

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Word Count Example

 Transformations declare intent, do not trigger
computation but simply build the lineage
 textFile, flatMap, map and reduceByKey are

transformations
 Actions trigger computation on parent RDD

 collect is an action
 Data transparently managed by runtime

val textFile = sc.textFile(”input.txt")
val counts = textFile.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)
counts.collect()

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Partitioning

Data is partitioned by the runtime

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Stages

 Vertical data movement (local) between transformations
 Horizontal (remote) and vertical data movement between stages (shuffle)

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Data Movement in Spark
 Block is the unit of movement and execution

 Ideally, blocks are resident in memory
 Blocks are cached, evicts or spills to disk as necessary
 If swapped, bring the block from a persistent storage
 If remote, request the block from a remote manager

 Shuffle Manager interacts with Block Manager and local storage

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

I/O Happens Everywhere
 Program input/output

 Expected to be
distributed with global
namespace (HDFS)

 Runtime Managed
 Expected to be local

(Java FileOutputStream)
 Shuffle and Block

MAnager
join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Read
Input

Read
Input

Shuffle
Shuffle

Write
Output

BlockManager BlockManager

BlockManager

BlockManager

BlockManagerBlockManager

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Tuning Spark on Cray XC30

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Clouds
Disk I/O optimized for latency
Network optimized for bandwidth

Design Assumptions

 Spark expects
 Local disk with HDFS overlay for distributed file system
 Fast local disk (SSD) for shuffle files
 Assumes disk operations are fast

HPC
Disk I/O optimized for bandwidth
Network optimized for latency

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Systems Evaluated

 Cray XC 30 at NERSC (Edison): 2.4 GHz Ivy Bridge
 Cray XC at NERSC (Cori): 2.3 GHz Haswell + Burst Buffer nodes
 Spark 1.5.0

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Single Node Performance
 Cray slower than

workstation when data on
disk
 Same concurrency — 86% slower

on Edison than workstation
 All cores — 40% slower on Edison

than workstation when using all
cores (24)

 Cray matches workstation
when data already cached

Spark SQL Big Data Benchmark

S3 Suffix Scale Factor Rankings (rows) Rankings (bytes) UserVisits (rows) UserVisits (bytes) Documents (bytes)

/5nodes/ 5 90 Million 6.38GB 775 Million 126.8GB 136.9GB

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Disk I/O Overheads

 Biggest difference between
workstation and local disk
occurs in time per file
open operation
 Highly variable (14,000X larger

on Edison Lustre)
 Mean time per open 23x

greater on Edison than
workstation

23
14,000

32
34,200

1
1

1.2
13.5

43
7,000

59
8,100

Mean
Var

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

I/O Scalability

Shuffle opens = # Shuffle reads — O(cores2) total
Time per open increases with scale, unlike read/write

9,216 36,864
147,456

589,824

2,359,296
opens

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Improving I/O Performance

 Eliminate file operations that affect the metadata server
 Combine files within a node (currently per core combine)
 Keep files open (cache fopen)
 Use memory mapped local file system /dev/shm (cannot spill)
 Use file system backed by single Lustre file (can spill)

 Partial solutions that need to be used in conjunction
 Memory pressure is high is Spark due to resilience and poor

garbage collection
 Fopen() not necessarily from Spark (e.g. Parquet reader)
 Third party layers not optimized for HPC/Lustre

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

File Pooling
 Keep files open during shuffle

 User level pool of file stream objects
• When file is opened, instead borrow from pool if possible
• When file is closed, instead flush and return to pool
• When pool is full, close least-recently-used idle stream

 No distributed information is needed (node-level pools)
 From O(N2) to O(N) file opens
 Can bound the size of the pool

• Files = n * partitions per core * iterations
• Max Opens = reader threads * files

 Pool size limited
• Need to allow for open files from JVM, other parts of Spark

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

File-Backed Filesystems
 NERSC Shifter

 Lightweight container infrastructure for HPC
 Compatible with Docker images
 Integrated with Slurm scheduler
 Can control mounting of filesystems within container

 Per-Node Cache
 --volume=$SCRATCH/backingFile:/mnt:perNodeCache=

size=100G

 File for each node is created stored on backend Lustre filesystem
 File-backed filesystem mounted within each node’s container instance at

common path (/mnt)
 Single file open — intermediate data file opens are kept local

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Single Node Performance

File-pool helps
Local mount as
fast as RAMdisk

30% faster with file
pooling alone

42% faster with file
pooling plus mounted file

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Scalability

Spark on plain Lustre scales up to
O(100) cores

6x 12x 14x 19x

33x

61x
Spark on Lustre
mount scales up to
O(10,000) cores

At 10,240 cores
Lustremount is
only 1.6x slower
than RAMdisk

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Optimizing for the Tail Helps

BB median open is twice slower than Lustre
BB open variance is 5x smaller

BB scales better than standalone
Lustre

1x

1.2x 1.2x 1.4x
1.9x

3.9x

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Conclusions

 Very high rate of metadata operations in Spark
limits scalability
 Disk I/O dominated Spark performance

 Our solutions substantially improve scalability
 Default configuration scales up to O(100) cores
 Lustre-mount improves to O(10,000) cores scalability
 File-pooling adds another 10%
 File-pooling improves performance even for RAMdisk

 NERSC and Cray are already using our solutions
 File-mounting capabilities built into Shifter

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Acknowledgements

 Intel Parallel Computing Center – Big Data Support on HPC

 This research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Thanks!

	Scaling Apache Spark�on Lustre
	Data Analytics
	Berkeley Data Analytics Stack
	�HPC Cloud�
	Slide Number 5
	Spark
	Word Count Example
	Partitioning
	Stages
	Data Movement in Spark
	I/O Happens Everywhere
	Slide Number 12
	Design Assumptions
	Systems Evaluated
	Single Node Performance
	Disk I/O Overheads
	I/O Scalability
	Improving I/O Performance
	File Pooling
	File-Backed Filesystems
	Single Node Performance
	Scalability
	Optimizing for the Tail Helps
	Conclusions
	Acknowledgements
	Slide Number 26

