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Data Analytics

 Spark- “fast and general engine for large-scale data 
processing”

 Specialized runtime provides for
 Performance ()
 Elastic parallelism
 Resilience

 Improves programmer productivity through 
 HLL front-ends (Scala, R, SQL) 
 Multiple domain-specific libraries: Streaming, SparkSQL, SparkR, GraphX, Splash, 

MLLib, Velox

 Developed for cloud environments, performance “satisfactory”
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Berkeley Data Analytics Stack

From https://amplab.cs.berkeley.edu/software/

BDB

Page
Rank

Collab
Filter
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HPC         Cloud

 Differences in architecture and system design impact 
performance
 HPC == Centralized I/O vs. Cloud == Distributed I/O 
 Limited scalability in default configuration
 HPC -> storage dominates vs Cloud -> network dominates

 Differences in usage and expectations impact software 
design, and ultimately performance
 HPC enables Global Name Spaces
 HPC practices encourage tightly coupled parallelism
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What’s in Spark?
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Spark

 Central abstraction is the Resilient Distributed Dataset, or 
RDD.
 Composed of partitions of data

• which are composed of blocks.
 RDDs are created from other RDDs by applying transformations or 

actions.
 Has a lineage specifying how its blocks are computed.
 Requesting a block either retrieves from cache or triggers 

computation.
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Word Count Example

 Transformations declare intent, do not trigger 
computation but simply build the lineage
 textFile, flatMap, map and reduceByKey are 

transformations
 Actions trigger computation on parent RDD

 collect is an action
 Data transparently managed by runtime

val textFile = sc.textFile(”input.txt")
val counts = textFile.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)
counts.collect()
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Partitioning

Data is partitioned by the runtime
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Stages

 Vertical data movement (local) between transformations
 Horizontal (remote) and vertical data movement between stages (shuffle)
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Data Movement in Spark
 Block is the unit of movement and execution 

 Ideally, blocks are resident in memory
 Blocks are cached, evicts or spills to disk as necessary
 If swapped, bring the block from a persistent storage
 If remote, request the block from a remote manager

 Shuffle Manager interacts with Block Manager and local storage 
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I/O Happens Everywhere
 Program input/output

 Expected to be 
distributed with global 
namespace (HDFS)

 Runtime Managed
 Expected to be local 

(Java FileOutputStream)
 Shuffle and Block 

MAnager
join
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Tuning Spark on Cray XC30
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Clouds
Disk I/O optimized for latency
Network optimized for bandwidth

Design Assumptions

 Spark expects
 Local disk with HDFS overlay for distributed file system
 Fast local disk (SSD) for shuffle files
 Assumes disk operations are fast

HPC
Disk I/O optimized for bandwidth
Network optimized for latency
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Systems Evaluated

 Cray XC 30 at NERSC (Edison): 2.4 GHz Ivy Bridge
 Cray XC at NERSC (Cori): 2.3 GHz Haswell + Burst Buffer nodes 
 Spark 1.5.0
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Single Node Performance
 Cray slower than 

workstation when data on 
disk
 Same concurrency — 86% slower 

on Edison than workstation 
 All cores  — 40% slower on Edison 

than workstation when using all 
cores (24)

 Cray matches workstation 
when data already cached

Spark SQL Big Data Benchmark

S3 Suffix Scale Factor Rankings (rows) Rankings (bytes) UserVisits (rows) UserVisits (bytes) Documents (bytes)

/5nodes/ 5 90 Million 6.38GB 775 Million 126.8GB 136.9GB
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Disk I/O Overheads

 Biggest difference between 
workstation and local disk 
occurs in time per file 
open operation
 Highly variable (14,000X larger 

on Edison Lustre)
 Mean time per open 23x 

greater on Edison than 
workstation
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I/O Scalability

# Shuffle opens = # Shuffle reads — O(cores2) total
Time per open increases with scale, unlike read/write 

9,216 36,864
147,456

589,824

2,359,296 
opens
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Improving I/O Performance

 Eliminate file operations that affect the metadata server
 Combine files within a node (currently per core combine)
 Keep files open (cache fopen)
 Use memory mapped local file system /dev/shm (cannot spill)
 Use file system backed by single Lustre file (can spill)

 Partial solutions that need to be used in conjunction
 Memory pressure is high is Spark due to resilience and poor 

garbage collection
 Fopen() not necessarily from Spark (e.g. Parquet reader)
 Third party layers not optimized for HPC/Lustre
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File Pooling
 Keep files open during shuffle

 User level pool of file stream objects
• When file is opened, instead borrow from pool if possible
• When file is closed, instead flush and return to pool
• When pool is full, close least-recently-used idle stream

 No distributed information is needed (node-level pools)
 From O(N2) to O(N) file opens
 Can bound the size of the pool

• Files = n * partitions per core * iterations
• Max Opens = reader threads * files

 Pool size limited
• Need to allow for open files from JVM, other parts of Spark
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File-Backed Filesystems
 NERSC Shifter

 Lightweight container infrastructure for HPC
 Compatible with Docker images
 Integrated with Slurm scheduler
 Can control mounting of filesystems within container

 Per-Node Cache
 --volume=$SCRATCH/backingFile:/mnt:perNodeCache=

size=100G

 File for each node is created stored on backend Lustre filesystem
 File-backed filesystem mounted within each node’s container instance at 

common path (/mnt)
 Single file open — intermediate data file opens are kept local
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Single Node Performance

File-pool helps
Local mount as
fast as RAMdisk

30% faster with file 
pooling alone

42% faster with file 
pooling plus mounted file
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Scalability

Spark on plain Lustre scales up to 
O(100) cores

6x 12x 14x 19x

33x

61x
Spark on Lustre
mount scales up to
O(10,000) cores

At 10,240 cores 
Lustremount is 
only 1.6x slower 
than RAMdisk
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Optimizing for the Tail Helps

BB median open is twice slower than Lustre
BB open variance is 5x smaller

BB scales better than standalone
Lustre

1x

1.2x 1.2x 1.4x
1.9x

3.9x
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Conclusions

 Very high rate of metadata operations in Spark 
limits scalability
 Disk I/O dominated Spark performance

 Our solutions substantially improve scalability
 Default configuration scales up to O(100) cores
 Lustre-mount improves to O(10,000) cores scalability
 File-pooling adds another 10%
 File-pooling improves performance even for RAMdisk

 NERSC and Cray are already using our solutions
 File-mounting capabilities built into Shifter
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Thanks!
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