
COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Scaling Apache Spark
on Lustre

Nicholas Chaimov (U Oregon)
Costin Iancu, Khaled Ibrahim, Shane Canon, Jay Srinivasan (LBNL)

Allen Malony (U Oregon)

Intel Parallel Computing Center – Big Data Support for HPC

“Scaling Spark on HPC Systems” to appear in HPDC 2016

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Data Analytics

 Spark- “fast and general engine for large-scale data
processing”

 Specialized runtime provides for
 Performance ()
 Elastic parallelism
 Resilience

 Improves programmer productivity through
 HLL front-ends (Scala, R, SQL)
 Multiple domain-specific libraries: Streaming, SparkSQL, SparkR, GraphX, Splash,

MLLib, Velox

 Developed for cloud environments, performance “satisfactory”

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Berkeley Data Analytics Stack

From https://amplab.cs.berkeley.edu/software/

BDB

Page
Rank

Collab
Filter

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

HPC Cloud

 Differences in architecture and system design impact
performance
 HPC == Centralized I/O vs. Cloud == Distributed I/O
 Limited scalability in default configuration
 HPC -> storage dominates vs Cloud -> network dominates

 Differences in usage and expectations impact software
design, and ultimately performance
 HPC enables Global Name Spaces
 HPC practices encourage tightly coupled parallelism

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

What’s in Spark?

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Spark

 Central abstraction is the Resilient Distributed Dataset, or
RDD.
 Composed of partitions of data

• which are composed of blocks.
 RDDs are created from other RDDs by applying transformations or

actions.
 Has a lineage specifying how its blocks are computed.
 Requesting a block either retrieves from cache or triggers

computation.

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Word Count Example

 Transformations declare intent, do not trigger
computation but simply build the lineage
 textFile, flatMap, map and reduceByKey are

transformations
 Actions trigger computation on parent RDD

 collect is an action
 Data transparently managed by runtime

val textFile = sc.textFile(”input.txt")
val counts = textFile.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)
counts.collect()

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Partitioning

Data is partitioned by the runtime

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Stages

 Vertical data movement (local) between transformations
 Horizontal (remote) and vertical data movement between stages (shuffle)

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Data Movement in Spark
 Block is the unit of movement and execution

 Ideally, blocks are resident in memory
 Blocks are cached, evicts or spills to disk as necessary
 If swapped, bring the block from a persistent storage
 If remote, request the block from a remote manager

 Shuffle Manager interacts with Block Manager and local storage

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

I/O Happens Everywhere
 Program input/output

 Expected to be
distributed with global
namespace (HDFS)

 Runtime Managed
 Expected to be local

(Java FileOutputStream)
 Shuffle and Block

MAnager
join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Read
Input

Read
Input

Shuffle
Shuffle

Write
Output

BlockManager BlockManager

BlockManager

BlockManager

BlockManagerBlockManager

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Tuning Spark on Cray XC30

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Clouds
Disk I/O optimized for latency
Network optimized for bandwidth

Design Assumptions

 Spark expects
 Local disk with HDFS overlay for distributed file system
 Fast local disk (SSD) for shuffle files
 Assumes disk operations are fast

HPC
Disk I/O optimized for bandwidth
Network optimized for latency

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Systems Evaluated

 Cray XC 30 at NERSC (Edison): 2.4 GHz Ivy Bridge
 Cray XC at NERSC (Cori): 2.3 GHz Haswell + Burst Buffer nodes
 Spark 1.5.0

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Single Node Performance
 Cray slower than

workstation when data on
disk
 Same concurrency — 86% slower

on Edison than workstation
 All cores — 40% slower on Edison

than workstation when using all
cores (24)

 Cray matches workstation
when data already cached

Spark SQL Big Data Benchmark

S3 Suffix Scale Factor Rankings (rows) Rankings (bytes) UserVisits (rows) UserVisits (bytes) Documents (bytes)

/5nodes/ 5 90 Million 6.38GB 775 Million 126.8GB 136.9GB

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Disk I/O Overheads

 Biggest difference between
workstation and local disk
occurs in time per file
open operation
 Highly variable (14,000X larger

on Edison Lustre)
 Mean time per open 23x

greater on Edison than
workstation

23
14,000

32
34,200

1
1

1.2
13.5

43
7,000

59
8,100

Mean
Var

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

I/O Scalability

Shuffle opens = # Shuffle reads — O(cores2) total
Time per open increases with scale, unlike read/write

9,216 36,864
147,456

589,824

2,359,296
opens

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Improving I/O Performance

 Eliminate file operations that affect the metadata server
 Combine files within a node (currently per core combine)
 Keep files open (cache fopen)
 Use memory mapped local file system /dev/shm (cannot spill)
 Use file system backed by single Lustre file (can spill)

 Partial solutions that need to be used in conjunction
 Memory pressure is high is Spark due to resilience and poor

garbage collection
 Fopen() not necessarily from Spark (e.g. Parquet reader)
 Third party layers not optimized for HPC/Lustre

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

File Pooling
 Keep files open during shuffle

 User level pool of file stream objects
• When file is opened, instead borrow from pool if possible
• When file is closed, instead flush and return to pool
• When pool is full, close least-recently-used idle stream

 No distributed information is needed (node-level pools)
 From O(N2) to O(N) file opens
 Can bound the size of the pool

• Files = n * partitions per core * iterations
• Max Opens = reader threads * files

 Pool size limited
• Need to allow for open files from JVM, other parts of Spark

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

File-Backed Filesystems
 NERSC Shifter

 Lightweight container infrastructure for HPC
 Compatible with Docker images
 Integrated with Slurm scheduler
 Can control mounting of filesystems within container

 Per-Node Cache
 --volume=$SCRATCH/backingFile:/mnt:perNodeCache=

size=100G

 File for each node is created stored on backend Lustre filesystem
 File-backed filesystem mounted within each node’s container instance at

common path (/mnt)
 Single file open — intermediate data file opens are kept local

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Single Node Performance

File-pool helps
Local mount as
fast as RAMdisk

30% faster with file
pooling alone

42% faster with file
pooling plus mounted file

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Scalability

Spark on plain Lustre scales up to
O(100) cores

6x 12x 14x 19x

33x

61x
Spark on Lustre
mount scales up to
O(10,000) cores

At 10,240 cores
Lustremount is
only 1.6x slower
than RAMdisk

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Optimizing for the Tail Helps

BB median open is twice slower than Lustre
BB open variance is 5x smaller

BB scales better than standalone
Lustre

1x

1.2x 1.2x 1.4x
1.9x

3.9x

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Conclusions

 Very high rate of metadata operations in Spark
limits scalability
 Disk I/O dominated Spark performance

 Our solutions substantially improve scalability
 Default configuration scales up to O(100) cores
 Lustre-mount improves to O(10,000) cores scalability
 File-pooling adds another 10%
 File-pooling improves performance even for RAMdisk

 NERSC and Cray are already using our solutions
 File-mounting capabilities built into Shifter

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Acknowledgements

 Intel Parallel Computing Center – Big Data Support on HPC

 This research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Thanks!

	Scaling Apache Spark�on Lustre
	Data Analytics
	Berkeley Data Analytics Stack
	�HPC Cloud�
	Slide Number 5
	Spark
	Word Count Example
	Partitioning
	Stages
	Data Movement in Spark
	I/O Happens Everywhere
	Slide Number 12
	Design Assumptions
	Systems Evaluated
	Single Node Performance
	Disk I/O Overheads
	I/O Scalability
	Improving I/O Performance
	File Pooling
	File-Backed Filesystems
	Single Node Performance
	Scalability
	Optimizing for the Tail Helps
	Conclusions
	Acknowledgements
	Slide Number 26

