
Olaf Weber
Senior Software Engineer
SGI Storage Software

Amir Shehata
Lustre Network Engineer
Intel High Performance Data Division

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands
may be claimed as the property of others. All products, dates, and figures are preliminary and are subject to change without any notice. Copyright © 2016, Intel Corporation.

3

Multi-Rail LNet
Multi-Rail is a long-standing wish list item known under a variety of names:

 Multi-Rail

 Interface Bonding

 Channel Bonding

The various names do imply some technical differences.

This implementation is a collaboration between SGI® and Intel®.

Our goal is to land multi-rail support in Lustre*.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands
may be claimed as the property of others. All products, dates, and figures are preliminary and are subject to change without any notice. Copyright © 2016, Intel Corporation.

4

What Is Multi-Rail?
Multi-Rail allows nodes to communicate across multiple interfaces:

 Using multiple interfaces connected to one network

 Using multiple interfaces connected to several networks

 These interfaces are used simultaneously

5

We want to support big Lustre nodes.

 SGI UV 300: 32-socket NUMA system

 SGI UV 3000: 256-socket NUMA system

A system with multiple TB of memory
needs a lot of bandwidth.

NUMA systems benefit when memory
buffers and interfaces are close in the
system’s topology.

Why Multi-Rail: Big Clients

6

Why Multi-Rail: Increasing Server Bandwidth
In big clusters, bandwidth to the server nodes becomes a bottleneck.

Adding faster interfaces implies replacing much or all of the network.

 Adding faster interfaces only to the servers does not work

Adding more interfaces to the servers increases the bandwidth.

 Using those interfaces requires a redesign of the LNet networks

 Without Multi-Rail each interface connects to a separate LNet network

 Clients must be distributed across these networks

It should be simpler than this.

7

The Multi-Rail Project
 Add basic multi-rail capability

• Multiplexing across interfaces, as opposed to striping across them

• Multiple data streams are therefore needed to profit

 Extend peer discovery to simplify configuration
• Discover peer interfaces

• Discover peer multi-rail capability

 Configuration can be changed at runtime
• This includes adding or removing interfaces

• lnetctl is used for configuration

 Compatible with non-Multi-Rail nodes

 Add resiliency by using alternate paths in case of failures

8

This is a small Lustre cluster with a
single big client node.

All nodes are connected to a single
fabric (physical network). There is one
LNet network connecting the nodes.

The big UV node has a single
connection to this network. It has the
same network bandwidth available to it
as the small clients.

Single Fabric With One LNet Network

MGT

MDT

OST

OST

MGSClient

MDS

OSS

OSS

Client

UV OSS OST

9

Additional interfaces have been added
to the UV to increase its bandwidth.

Without Multi-Rail LNet we must
configure multiple LNet networks.

Each OSS lives on a separate LNet
network, within the single fabric.

Each interface on the UV connects to
one of these LNet networks.

On the other client nodes, aliases are
used to connect a single interface to
multiple LNet networks.

Single Fabric With Multiple LNet Networks

MGT

MDT

OST

OST

MGS

MDS

OSS

OSS

OSS OSTUV

Client

Client

10

Multi-Rail LNet allows for the LNet
network configuration to match the
fabric.

The fabric is the same as in the
previous slide.

The configuration is much simpler.

The network bandwidth to the UV node
is increased to match its size.

Single Fabric With One Multi-Rail LNet Network

MGT

MDT

OST

OST

MGSClient

MDS

OSS

OSS

Client

OSS OSTUV

11

In this example there are two fabrics,
each with an LNet network on top.

The server nodes connect to both
fabrics.

The UV client connects with multiple
interfaces to both fabrics.

The other client nodes connect to only
one fabric.

Dual Fabric With Dual Multi-Rail LNet Networks

MGT

MDT

OST

OST

OSS OSTUV

Client

Client

OSS

MGS

MDS

OSS

13

Use Cases
 Improved performance

 Improved resiliency

 Better usage of large clients

• The Multi-Rail code is NUMA aware

 Fine grained control of traffic

 Simplify multi-network file system access

14

Two Types of Configuration Methods
Multi-Rail can be configured statically with lnetctl.

 The following must be configured statically
• Local network interfaces

– The network interfaces by which a node sends messages

• Selection rules
– The rules which determine the local/remote network interface pair used to communicate

between a node and a peer
– Default is weighted round-robin

 The following may be configured statically, but can be discovered dynamically
• Peer network interfaces

– The remote network interfaces of peer nodes to which a node sends messages

Enable dynamic peer discovery to have LNet configure peers automatically

15

Static Configuration – Basic Concepts
On a node:

 Configure local network interfaces
• Example: tcp(eth0,eth1)

– <eth0 IP>@tcp, <eth1 IP>@tcp

 Configure remote network interfaces
• Specify the peer’s Network Interface IDs (NIDs)

– <peerX primary NID>, <peerX NID2>, …

 Configure selection rules

16

Dynamic Configuration – Basic Concepts
LNet can dynamically discover a peer’s NIDs.

On a node:

 Local network interfaces must be configured as before

 Selection rules must be configured as before

 Peers are discovered as messages are sent and received
• An LNet ping is used to get a list of the peer’s NIDs

• A feature bit indicates whether the peer supports Multi-Rail

• The node pushes a list of its NIDs to Multi-Rail peers

17

Selection Rules – Basic Concepts
Selection rules work by adding priorities

 Higher priorities are preferred

 The rules specify patterns

The following types of rules are supported

 Network

 Local NID

 Peer NID

 Local NID / peer NID pair
• These rules have two NID patterns, one for the local NID, one for the peer NID

• They are used to specify preferred paths

18

Configuring the OSS

net:
- net type: o2ib

local NI(s):
- interfaces:

0: ib0
1: ib1

Example: Improved Performance

MGT

MDT

OST

MGS

MDS

OSS

o2ib0

Client

Client

Client

Client

Client

Client

Client

19

Example: Improved Resiliency

MGT

MDT

OST

MGS

Client

MDS

OSS

Client
IB:
o2ib0

Client

Client

Client

Client

Client

OPA:
o2ib1

20

Configuring the Clients and OSS:

net:
- net type: o2ib

local NI(s):
- interfaces:

0: ib0
- net type: o2ib1

local NI(s):
- interfaces:

0: ib1

selection:
- type: net

net: o2ib
priority: 0 # highest priority

- type: net
net: o2ib1
priority: 1

Example: Improved Resiliency

21

Example: Multi Network Filesystem Access

MGT

MDT

OST

MGS

Client

MDS

OSS

Client
o2ib0

Client

Client

Client

Client

tcp0

22

TCP Clients

net:
- net type: tcp0

local NI(s):
- interfaces:

0: eth0
peer:

- primary nid: <mgs-ib-ip>@o2ib0
peer ni:

- nid: <mgs-tcp-ip>@tcp0
selection:

- type: nid
- nid: *.*.*.*@tcp*
- priority: 0 # highest priority

Example: Multi Network Filesystem Access
IB Clients

net:
- net type: o2ib

local NI(s):
- interfaces:

0: ib0
peer:

- primary nid: <mgs-ib-ip>@o2ib0
peer ni:

- nid: <mgs-tcp-ip>@tcp0
selection:

- type: nid
- nid: *.*.*.*@o2ib*
- priority: 0 # highest priority

23

This is a single fabric with a bottleneck.

Client1: 10.10.10.2@o2ib
Client2: 10.10.10.3@o2ib
MGS-1: 10.10.10.4@o2ib
MGS-2: 10.10.10.5@o2ib
MDS-1: 10.10.10.6@o2ib
MDS-2: 10.10.10.7@o2ib
OSS1-1: 10.10.10.8@o2ib
OSS1-2: 10.10.10.9@o2ib
OSS2-1: 10.10.10.10@o2ib
OSS2-2: 10.10.10.11@o2ib

Example: Fine Grained Traffic Control

MGT

MDT

OST

OSS2 OST

Client2

Client1 MGS

MDS

OSS1

24

This rule makes Client1 avoid the red
path:

selection:
- type: peer

local: 10.10.10.2@o2ib
remote: 10.10.10.[4-10/2]@o2ib
priority: 0 # highest priority

Client1 will only use the red path if
there is no other option.

Example: Fine Grained Traffic Control

MGT

MDT

OST

OSS2 OST

Client2

Client1 MGS

MDS

OSS1

26

Project Status
Public project wiki page:

 http://wiki.lustre.org/Multi-Rail_LNet

Code development is done on the multi-rail branch of the Lustre master repo.

 Patches to enable static configuration are under review

 Unit testing and system testing underway

 Patches for selection rules are under development

 Patches for dynamic peer discovery are under development

 Estimated project completion time: end of this year

 Master landing date: TBD

27

Legal Notices and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration
will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more
complete information about performance and benchmark results, visit http://www.intel.com/performance.

Intel disclaims all express and implied warranties, including, without limitation, the implied warranties and merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing or usage in trade.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.

© 2016 Intel Corporation.

http://www.intel.com/performance

	Multi-Rail LNet for Lustre*
	Multi-Rail LNet: What and Why
	Multi-Rail LNet
	What Is Multi-Rail?
	Why Multi-Rail: Big Clients
	Why Multi-Rail: Increasing Server Bandwidth
	The Multi-Rail Project
	Single Fabric With One LNet Network
	Single Fabric With Multiple LNet Networks
	Single Fabric With One Multi-Rail LNet Network
	Dual Fabric With Dual Multi-Rail LNet Networks
	Configuring Multi-Rail LNet
	Use Cases
	Two Types of Configuration Methods
	Static Configuration – Basic Concepts
	Dynamic Configuration – Basic Concepts
	Selection Rules – Basic Concepts
	Example: Improved Performance
	Example: Improved Resiliency
	Example: Improved Resiliency
	Example: Multi Network Filesystem Access
	Example: Multi Network Filesystem Access
	Example: Fine Grained Traffic Control
	Example: Fine Grained Traffic Control
	Multi-Rail LNet Project Status
	Project Status
	Legal Notices and Disclaimers
	Slide Number 28

