
Accelerating Lustre
with SSDs and NVMe

James Coomer, DDN

DDN ExaScaler Software Components
2

DDN DDN & Intel Intel HPDD 3rd Party

Intel DSS

DDN Block Storage with SFX Cache

ldiskfs
OpenZFS btrfs

DDN Lustre Edition with L2RC

Intel IML
DDN ExaScaler

DDN IMENFS/CIFS/S3DDN Clients

DDN DirectMon DDN ExaScaler Monitor

Intel Hadoop

ExaScaler Data Management Framework
Fast Data

Copy
Object (WOS)S3 (Cloud)Tape

3rd Party HW

Management and
Monitoring

Global Filesystem

Local Filesystem

Storage Hardware

Data Management

Level 3 support provided by:

OFD Read Cache Layer

DDN | ES14K
Designed for Flash and NVMe

Industry Leading Performance in 4U
 Up to 40 GB/sec throughput
 Up to 6 million IOPS to cache
 Up to 3.5 million IOPS to storage
 1PB+ capacity (with 16TB SSD)
 100 millisecond latency

Configuration Options
 72 SAS SSD or 48 NVMe
 SSDs or HDDs only
 HDDs with SSD caching
 SSDs with HDD tier

Connectivity
 FDR/EDR
 OmniPath
 40/100GbE

ES14K Architecture

QPI

IB/OPA 40/100 GbE

6 x SAS3

SFA14KE (Haswell) SFA14KEX (Broadwell)

OSS 0

SFAOS

OSS 1

SFAOS CPU1

6 x SAS3

QPI

6 x SAS3

OSS 0

SFAOS SFAOS

6 x SAS3

OSS 1

IB/OPA 40/100 GbE

CPU0 CPU1
CPU0

Why SSD Cache?
Don't blow the power/space/management with spindles

Write MB/s 4k Read IOPSSSDs still pricey... So
► Optimise Data for SSDs
► Optimise SSDs for Data

1
10
100
1,000
10,000
100,000
1,000,000
10,000,000
100,000,000
1,000,000,000

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

Seagate
Makara
(4 TB)

HGST
Ultrastar

(1.8
TB/10k

rpm)

Seagate
Tardis (4
TB/10k

rpm)

SanDisk
Cloud
Speed
(SSD

SATA)

Toshiba
Px04 (SSD

SAS)

Intel DC
P3700
(SSD

NVMe)

Data
residing on

SSD

Data
benefitting
from SSD

IO
acceleration

from SSD

all data

all data

IO
acceleration

from SSD

Data
residing on

SSD

Data
benefitting
from SSD

OSS OSS OSS OSS OSS OSS OSS OSS OSS

IME

OSS OSS OSS

SFX

Block-Level Read
Cache

Instant Commit,
DSS, fadvice()

Millions of Read
IOPS

L2RC

OSS-level Read
cache

Heuristics with
FileHeat

Millions of Read
IOPS

IME

I/O level Write and
Read Cache

Transparent + hints

10s of Millions of
Read/Write IOPS

All SSD Lustre

Lustre HSM for
Data Tiering to

HDD namespace

Generic Lustre I/O

Millions of Read
and Write IOPS

SSD Options
1 2 3 4

1. Rack Performance: Lustre

0
50

100
150
200
250
300
350
400

Write Read

IOR File-per-Process (GB/s)

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

Read

4k Random Read IOPS

350GB/s Read and Write (IOR)

4 Million IOPs

up to 4PB Flash
Capacity

2. SFX & ReACT – Accelerating Reads
Integrated with Lustre DSS

HDD Tier

DRAM Cache

OSS

SFX Tier

Large Reads

Sm
all Reads

Sm
all Rereads

Cache Warm

DSS

SF
X

AP
I

2. 4 KiB Random I/O

15,587 14,184 17,070

174,344

14,486 14,984 13,008 13,001

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000
200,000

No SFX/SSD Metadata No SFX Metadta Mix With SFX / Metadata
Mix

SFX Read Hit

IO
PS

Read Write

First Time I/O

Second Time I/O
SFA Read Hit

3. Lustre L2RC and File Heat

OSS OSS OSS

Heap of
Object Heat

Values

PREFETCH

Higher heat ==
Higher access

frequency

Lower heat == Lower access frequency

OSS-based Read Caching
– Uses SSDs (or SFA SSD pools) on the

OSS as read cache
– Automatic prefetch management

based on file heat
– File-heat is a relative (tunable)

attribute that reflects file access
frequency

– Indexes are kept in memory (worst
case is 1 TB SSD for 10 GB memory)

– Efficient space management for the
SSD cache space (4KB-1 MB extends)

– Full support for ladvice in Lustre

3. File Heat Utility

• tune the arguments of file heat with proc interfaces
/proc/fs/lustre/heat_period_second
/proc/fs/lustre/heat_replacement_percentage

• Utils to get file heat values: lfs heat_get <file>

• Utils to set flags for file heat:
lfs heat_set [--clear|-c] [--off|-o] [--on|-O] <file>

• Heat can be cleared by: lfs heat_set --clear

• Heat accounting of a file can be turned off by: lfs heat_set --off

• Heaps on OSTs which can be used to dump lists of FIDs sorted by heat:
[root@server9-Centos6-vm01 cache]# cat
/proc/fs/lustre/obdfilter/lustre-OST0000/heat_top
[0x200000400:0x1:0x0] [0x100000000:0x2:0x0]: 0 740 0 775946240
[0x200000400:0x9:0x0] [0x100000000:0x6:0x0]: 0 300 0 314572800
[0x200000400:0x8:0x0] [0x100000000:0x5:0x0]: 0 199 0 208666624
[0x200000400:0x7:0x0] [0x100000000:0x4:0x0]: 0 100 0 104857600
[0x200000400:0x6:0x0] [0x100000000:0x3:0x0]: 0 100 0 104857600

3. Random Read Performance with L2RC

14

40 x
Spindle
Drive

80 x
Spindle
Drive

160 x
Spindle
Drive

160 x
Spindle

Drive with
L2RC

4 x OST
on SSD

4 x
SSD(RAID

1) Raw
device

4K Random IOPS 13,739 26,064 38,688 389,232 416,994 440,428

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

IO
PS

 (o
ps

/s
ec

)
4KB Random Read IOPS (HDD/SSD based OST vs. OST & L2RC)

10x

DDN | IME
Application I/O Workflow

NVM TIER LUSTRECOMPUTE

Lightweight IME client
intercepts application I/O.
Places fragments into
buffers + parity

IME client sends
fragments to IME
servers

IME servers write
buffers to NVM and
manage internal
metadata

IME servers write
aligned sequential
I/O to SFA backend

Parallel File system
operates at maximum
efficiency

IME server IME server IME server IME server

4. IME Write Dataflow

IME server

Application

IME Client

Parallel Filesystem

1. Application issues
fragmented, misaligned IO

2. IME clients send
fragments to IME servers

3. Fragments are sent to
IME servers and are

accessible via DHT to all
clients

4. Fragments to be flushed
from IME are assembled into

PFS stripes

5. PFS receives
complete aligned PFS

stripe

ApplicationApplicationApplication

IME ClientIME ClientIME Client

COMPUTE NODES

4. IME Erasure Coding

• Data protection against IME server or SSD
Failure is optional
– (the lost data is "just cache”)

• Erasure Coding calculated at the Client
– Great scaling with extremely high client count
– Servers don't get clogged up

• Erasure coding does reduce useable Client
bandwidth and useable IME capacity:
– 3+1: 56Gb 42Gb
– 5+1: 56Gb 47Gb
– 7+1: 56Gb 49Gb
– 8+1: 56Gb 50Gb

COMPUTE NODES

IME

PFS

LUSTRE

PFS PFS

Data buffer

Parity
buffer

Data buffer

Data buffer

4. Rack Performance: IME

500GB/s Read and Write

50 Million IOPs

768TB Flash Capacity
0

100

200

300

400

500

600

Write Read

IOR File-per-Process (GB/s)

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Write Read

4k Random IOPS

Summary

• SSDs can today be seamlessly introduced into a Lustre Filesystem
– Modest investment in SSDs
– Intelligent policy-driven data moves the most appropriate blocks/files to SSD

cache
– Block level and Lustre Object Level data placement schemes

• IME is a ground-up NVM distributed cache which adds
– Write Performance optimisation (not just read)
– Small, random I/O optimisations
– Shared (many-to-one) file optimisations
– Improved SSD lifetime
– Back-end Lustre IO optimisation

	Accelerating Lustre �with SSDs and NVMe
	DDN ExaScaler Software Components
	DDN | ES14K �Designed for Flash and NVMe
	ES14K Architecture
	Why SSD Cache?�Don't blow the power/space/management with spindles
	Slide Number 6
	Slide Number 7
	SSD Options
	1. Rack Performance: Lustre
	2. SFX & ReACT – Accelerating Reads�Integrated with Lustre DSS
	2. 4 KiB Random I/O
	3. Lustre L2RC and File Heat
	3. File Heat Utility
	3. Random Read Performance with L2RC
	DDN | IME�Application I/O Workflow
	4. IME Write Dataflow
	4. IME Erasure Coding
	4. Rack Performance: IME
	Summary

