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DDN | ES14K 
Designed for Flash and NVMe

Industry Leading Performance in 4U 
 Up to 40 GB/sec throughput
 Up to 6 million IOPS to cache
 Up to 3.5 million IOPS to storage
 1PB+ capacity (with 16TB SSD)
 100 millisecond latency

Configuration Options
 72 SAS SSD or 48 NVMe
 SSDs or HDDs only
 HDDs with SSD caching
 SSDs with HDD tier

Connectivity
 FDR/EDR
 OmniPath
 40/100GbE



ES14K Architecture
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Why SSD Cache?
Don't blow the power/space/management with spindles

Write MB/s 4k Read IOPSSSDs still pricey... So
► Optimise Data for SSDs
► Optimise SSDs for Data
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1. Rack Performance: Lustre
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2. SFX & ReACT – Accelerating Reads
Integrated with Lustre DSS

HDD Tier

DRAM Cache

OSS

SFX Tier

Large Reads

Sm
all Reads

Sm
all Rereads

Cache Warm

DSS

SF
X 

AP
I



2. 4 KiB Random I/O
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3. Lustre L2RC and File Heat

OSS OSS OSS

Heap of 
Object Heat 

Values

PREFETCH

Higher heat == 
Higher access 

frequency

Lower heat == Lower access frequency

OSS-based Read Caching
– Uses SSDs (or SFA SSD pools) on the 

OSS as read cache
– Automatic prefetch management 

based on file heat
– File-heat is a relative (tunable) 

attribute that reflects file access 
frequency

– Indexes are kept in memory (worst 
case is 1 TB SSD for 10 GB memory)

– Efficient space management for the 
SSD cache space (4KB-1 MB extends)

– Full support for ladvice in Lustre



3. File Heat Utility

• tune the arguments of file heat with proc interfaces
/proc/fs/lustre/heat_period_second
/proc/fs/lustre/heat_replacement_percentage

• Utils to get file heat values: lfs heat_get <file> 

• Utils to set flags for file heat:
lfs heat_set [--clear|-c] [--off|-o] [--on|-O] <file>

• Heat can be cleared by: lfs heat_set --clear

• Heat accounting of a file can be turned off by: lfs heat_set --off

• Heaps on OSTs which can be used to dump lists of FIDs sorted by heat:
[root@server9-Centos6-vm01 cache]# cat 
/proc/fs/lustre/obdfilter/lustre-OST0000/heat_top
[0x200000400:0x1:0x0] [0x100000000:0x2:0x0]: 0 740 0 775946240
[0x200000400:0x9:0x0] [0x100000000:0x6:0x0]: 0 300 0 314572800
[0x200000400:0x8:0x0] [0x100000000:0x5:0x0]: 0 199 0 208666624
[0x200000400:0x7:0x0] [0x100000000:0x4:0x0]: 0 100 0 104857600
[0x200000400:0x6:0x0] [0x100000000:0x3:0x0]: 0 100 0 104857600



3. Random Read Performance with L2RC
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DDN | IME
Application I/O Workflow

NVM TIER LUSTRECOMPUTE

Lightweight IME client 
intercepts application I/O. 
Places fragments into 
buffers + parity

IME client sends 
fragments to IME 
servers

IME servers write 
buffers to NVM and 
manage internal 
metadata 

IME servers write 
aligned sequential 
I/O to SFA backend 

Parallel File system 
operates at maximum 
efficiency
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4. IME Write Dataflow
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4. IME Erasure Coding

• Data protection against IME server or SSD 
Failure is optional
– (the lost data is "just cache”)

• Erasure Coding calculated at the Client
– Great scaling with extremely high client count
– Servers don't get clogged up

• Erasure coding does reduce useable Client 
bandwidth and useable IME capacity:
– 3+1: 56Gb  42Gb 
– 5+1: 56Gb  47Gb 
– 7+1: 56Gb  49Gb 
– 8+1: 56Gb  50Gb 
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4. Rack Performance: IME
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Summary

• SSDs can today be seamlessly introduced into a Lustre Filesystem
– Modest investment in SSDs
– Intelligent policy-driven data moves the most appropriate blocks/files to SSD 

cache
– Block level and Lustre Object Level data placement schemes

• IME is a ground-up NVM distributed cache which adds
– Write Performance optimisation (not just read)
– Small, random I/O optimisations
– Shared (many-to-one) file optimisations
– Improved SSD lifetime
– Back-end Lustre IO optimisation
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