
8. April 2016

Vectorized ZFS* RAIDZ Implementation

LUG 2016, Portland

neskovic@compeng.uni-frankfurt.de

Gvozden Nešković

* All trademarks are the property of their respective owners.



8. April 2016 2Images: GSI Helmholtzzentrum für Schwerionenforschung GmbH

• Facility for Antiproton and Ion Research
 Linear and Ring particle accelerators
 Heavy Ion Experiments
 Medical irradiation facility for cancer therapy
 Participation in the ALICE experiment at CERN

• HPC at FAIR/GSI
 Green IT Cube data center
 Compute clusters:
o Prometheus (~9000 cores, QDR IB)
o Kronos (~8000 cores, FDR IB)
 Lustre storage clusters:
o Hera (~7PB, Lustre 1.8)
o Nyx (~7PB, 45 OSSs, Lustre 2.5 on ZFS)
o ~1TB/s per experiment (10MHz event rate for CBM )

FAIR/GSI



8. April 2016 3* All trademarks are the property of their respective owners.

• Lustre on ldiskfs:
 Version of ext3/4
 Random writes limited by disk IOPS
 Availability: long offline fsck
 Reliability: hardware RAID controllers

• Lustre on ZFS:
 ZFS Transactional Object Layer
 Random writes limited by disk bandwidth (COW)
 Data & metadata checksums, compression, snapshots
 Availability: online scrubbing/resilvering
 Reliability: Replication, RAIDZ1/2/3

Lustre* & ZFS Motivation



8. April 2016 4

• ZFS volume management:
 Striping
 Mirroring
 RAIDZ levels

• RAIDZ-1/2/3 levels:
 Error Correction Erasure scheme
 Specialized Reed-Solomon Codes
 Advanced Block layout

ZFS RAIDZ levels



8. April 2016 5* All trademarks are the property of their respective owners.

• Properties:
 Based on Galois field GF[28] generated with p(x)=x8+x4+x3+x2+1
 Erasure code

RAIDZ Parity

, where

• Addition:
 XOR operation
 Efficient in scalar and vector

• Multiplication:
 By 2 and 4
 By a constant:
o Using log and exp look-up tables
o c  a = exp{ log(c) + log(a) }



8. April 2016 6* All trademarks are the property of their respective owners.

• RAIDZ-1 parity generation:
 Simple XOR parity (P code only)

• RAIDZ-2/3 parity generation:
 Transform the Q and R equations:

 RAIDZ-2 requires fast GF multiplication by 2 (PQ codes)
 RAIDZ-3 requires fast GF multiplication by 2 and 4 (PQR codes)

RAIDZ Parity Generation



8. April 2016 7* All trademarks are the property of their respective owners.

• Trivial when using only P parity

• Direct solving:
 Solve parity equations (matrix inversion method)
 Used in the original RAIDZ3 reconstruction
 Requires n GF multiplications per word

• Solving using syndromes:
 Used in the original RADIZ2 reconstruction
 Syndromes calculated first
o Parity calculation with zeroed missing data
 Requires 1 to 5 GF multiplications per word

RAIDZ Data Reconstruction



8. April 2016 8* All trademarks are the property of their respective owners.

1) “Intel* Carry-Less Multiplication Instruction and its Usage for Computing the GCM Mode”
2) “Optimizing Galois Field arithmetic for diverse processor architectures and Applications”. K.Greenan et al. 2008 

Vectorizing GF multiplication
• GF multiplication:

 Sum of carry-less multiplication and modulo parts 1)

 Computed efficiently using two lookup-tables 2)

o SSE variant computes 16 multiplication in parallel
o AVX2 variant computes 32 multiplication in parallel

• Contributed implementations:
• Scalar 32 and 64 bit
• SSE 128bit
• AVX2 256bit

GF operation Scalar SSE AVX2
Addition 8 16 32
Multiplication by 2/4 8/4 16 32
Multiplication 1 16 32

Word length in bytes for instruction set per operation



8. April 2016 9* All trademarks are the property of their respective owners.

ZFS RAIDZ-2 Results 
• RAIDZ-2
• 8 data disks
• 2 parity disks
• Generate PQ
• Reconstruct 2 

disks



8. April 2016 10* All trademarks are the property of their respective owners.

ZFS RAIDZ-3 Results 
• RAIDZ-3
• 8 data disks
• 3 parity disks
• Generate PQR
• Reconstruct 3 

disks



8. April 2016 11* All trademarks are the property of their respective owners.

Profiling with perf and FlameGraph1)

Data checksum

Parity generation

1) “Flame Graphs”, Brendan Gregg, http://www.brendangregg.com/flamegraphs.html

Original scalar implementation

AVX2 implementation



8. April 2016 12* All trademarks are the property of their respective owners.

New RAIDZ Implementations speed-up

RAIDZ operation Scalar SSE AVX2
P generate 2.2 2.4 2.6
P reconstruct 1.4 2.0 2.2
PQ generate 1.5 4.1 4.3
Q reconstruct 1.5 7.2 8.8
PQ reconstruct 1.2 4.7 7.1
PQR generate 1.4 5.6 8.8
R reconstruct 4.8 20.7 32.3
PR reconstruct 8.5 43.0 69.1
QR reconstruct 5.0 35.5 60.2
PQR reconstruct 5.9 50.1 85.8

Speed-up relative to the original RAIDZ methods



8. April 2016 13* All trademarks are the property of their respective owners.

• Benefits of vectorized RAIDZ methods:
• Faster parity generation
• Faster recalculation of missing data
• Shorter scrub and resilver times
• Increased reliability
• Decreased system acquiring and running costs

• Future work:
• Test and verify the implementation1)

• Upstream to ZFS on Linux
• Linear scrub…

Summary & Future work

1) ” A program can be made arbitrarily fast if you relax the requirement of correctness.” - D.Knuth



8. April 2016 14* All trademarks are the property of their respective owners.

Thank you!
Questions?

The End


	Vectorized ZFS* RAIDZ Implementation
	FAIR/GSI
	Lustre* & ZFS Motivation
	ZFS RAIDZ levels
	RAIDZ Parity
	RAIDZ Parity Generation
	RAIDZ Data Reconstruction
	Vectorizing GF multiplication
	ZFS RAIDZ-2 Results 
	ZFS RAIDZ-3 Results 
	Profiling with perf and FlameGraph1)
	New RAIDZ Implementations speed-up
	Summary & Future work
	The End

