Gvozden Neskovic

Vectorized ZFS™ RAIDZ Implementation

LUG 2016, Portland

neskovic@compeng.uni-frankfurt.de % Eﬂﬁfa”nké‘éﬁ Isrﬁﬁﬁ E 5 ][

* All trademarks are the property of their respective owners.



GOETHE
UNIVERSITAT

FRANKFURT AM MAIN

FAIR/GSI >

S . UNILAC ”

515100/200
p-LINAC

P o
i i -

-1 y ? - ; _.-"'

» Facility for Antiproton and lon Research .=~ > o .
= Linear and Ring particle accelerators S W e A

Production Target

= Heavy lon Experiments
= Medical irradiation facility for cancer therapy
= Participation in the ALICE experiment at CERN

 HPC at FAIR/GSI

= Green IT Cube data center

= Compute clusters:
o Prometheus (~9000 cores, QDR IB
O Kronos (~8000 cores, FDR IB

= |ustre storage clusters:
o Hera (~/PB, Lustre 1.8

O Nyx (~/PB, 45 OSSs, Lustre 2.5 on ZFS
o0 ~1TB/s per experiment (10MHz event rate for CBM

8. April 2016 Images: GSI Helmholtzzentrum fir Schwerionenforschung GmbH 9



Lustre™ & ZFS Motivation UNIVERSITAT

e Lustre on Idiskfs:
= Version of ext3/4
= Random writes limited by disk IOPS
= Avallability: long offline fsck
= Reliability: hardware RAID controllers

o Lustre on ZFS:
= /FS Transactional Object Layer
= Random writes limited by disk bandwidth (COW)
= Data & metadata checksums, compression, snapshots

= Avallability: online scrubbing/resilvering
= Reliability: Replication, RAIDZ1/2/3

8. April 2016 * All trademarks are the property of their respective owners.



8. April 2016

/FS RAIDZ levels

e /FS volume management:
= Striping
= Mirroring
= RAIDZ levels

e RAIDZ-1/2/3 levels:

= Error Correction Erasure scheme
= Specialized Reed-Solomon Codes
= Advanced Block layout

GOETHE E

DISK

-l -
P O DO D1 D2 D3

| i I 1 1 | |
P O DO D1 DZ P

\_ﬂ_ﬂ_'_ﬂ_i —
O DO Dl P O DO

—y—— |
PO OO0 DO D2 D4 Do
P1 O1 D1 D3 Db5

. . . W .




GOETHE E

RAIDZ Parity UNIVERSITAT

* Properties:
= Based on Galois field GF[2%] generated with p(X)=x8+x*+x3+x+1
= Erasure code

P=D,®D ®---®D,
Q=2"D ®2'*D ®---®2"*D 2=X"
R=4"eD,@4'eD ®---@4"+D, ,Where 4=X"

 Adaition: o Multiplication:
= XOR operation = By2and4
= Efficient in scalar and vector = By a constant:

O Using log and exp look-up tables
O ce*a=exp{log(c)+log(a)}

8. April 2016 * All trademarks are the property of their respective owners.



RAIDZ Parity Generation

e RAIDZ-1 parity generation:
= Simple XOR parity (P code only)

e RAIDZ-2/3 parity generation:

= Transform the Q and R equations:

Q=D,®2+(D,®---®2+(D,,®2°D,))
R=D,®4¢(D,®---®4+(D, , ®4°D,))

= RAIDZ-2 requires fast GF multiplication by 2 (PQ codes)
= RAIDZ-3 requires fast GF multiplication by 2 and 4 (PQR codes)

8. April 2016 * All trademarks are the property of their respective owners.



GOETHE ﬁ

RAIDZ Data Reconstruction

e Trivial when using only P parity

e Direct solving: D, =x *P®x,*Q®x,*D,®-®x,_,*D,,
= Solve parity equations (matrix inversion method)
D = *P® T IS oD P---@ _oDn_
» Used in the original RAIDZ3 reconstruction » T Yo "LD Y0 * D Fn2 s
= Reguires n GF multiplications per word

 Solving using syndromes: PP ®&D ®D
= Used In the original RADIZ2 reconstruction N ’

= Syndromes calculated first
o Parity calculation with zeroed missing data

= Requires 1 to 5 GF multiplications per word D.,=ae(POP,)Dbe(0DQ,)
D,=D ®PDP,))

0=0,02"eD D27 eD,

8. April 2016 * All trademarks are the property of their respective owners.



GOETHE E

Vectorizing GF multiplication

e GF multiplication:
aeb=(axb) mod p
aeb=L(axb) ® M(a,b)

= Sum of carry-less multiplication and modulo parts Y

GF operation Scalar SSE AVX?2
= Computed efficiently using two lookup-tables 2 Addition 3 16 3
o SSE variant computes 16 multiplication in parallel Multiplication by 2/4 8/4 16 32
0 AVX2 variant computes 32 multiplication in parallel Multiplication 1 16 32

Word length in bytes for instruction set per operation

 Contributed implementations:
e Scalar 32 and 64 bit
e SSE 128bit
e AVX2 256bit

1) “Intel” Carry-Less Multiplication Instruction and its Usage for Computing the GCM Mode”
2) “Optimizing Galois Field arithmetic for diverse processor architectures and Applications”. K.Greenan et al. 2008

8. April 2016 * All trademarks are the property of their respective owners.



GDET:HEQ
ZFS RAIDZ-2 Results

® RAl DZ-2 i — e imm E'., mm  Original gen P() =emm= original rec PQ
_ " = = & = gcalar gen PQQ = & » = gscalar rec PQ
o »‘ NEENITR SSEgenPQ "@" SSEI’GCPQ
8 data dISkS )‘, mimi AVX2 gen PQ 1= 311 AVX2 rec PQ

o 2 parity disks
e (Generate PQ

e Reconstruct 2
disks

8. April 2016 * All trademarks are the property of their respective owners.



GDETHEQ
ZFS RAIDZ-3 Results

e RAIDZ-3 prmmm R e e v
o 8§ data disks e : T
+ 3 parity disks o
» Generate PQR B s

e Reconstruct 3
disks

L T P R e TP C YR T T LT P CY LTI S

mmmmms  o1iginal gen PQR === original rec PQR
= & & = gealar gen PQR = @ = = gcalar rec PQR
{1 SSE gen PQR vt SSE rec PQR

| -E 1 AVX2 gen PQR '-@ 1 AVX2 rec PQR

8. April 2016 * All trademarks are the property of their respective owners.



o . GDETHEQ
Profiling with perf and FlameGraph?) AR

Parity generation

; Original scalar implementation

AVX2 implementation

| vdev_ra'id-z_generate__pa rity

!
==
o

|vdev queue_io_done

flietcher p l-"
Data checksum e o chc

z*@ x:hez:k“ | Zie.

1) “Flame Graphs”, Brendan Gregg, http://www.brendangregg.com/flamegraphs.htmi

8. April 2016 * All trademarks are the property of their respective owners. 1



8. April 2016

New RAIDZ Implementations speed-up

RAIDZ operation Scalar SSE AVX2
P generate 2.2 2.4 2.6
P reconstruct 1.4 2.0 2.2
PQ generate 1.5 4.1 4.3
Q reconstruct 1.5 {.2 8.8
PQ reconstruct 1.2 4.7 7.1
PQR generate 1.4 0.6 8.3
R reconstruct 4.8 20.7 32.3
PR reconstruct 8.9 43.0 09.1
QR reconstruct 5.0 35.5 00.2
PQR reconstruct 5.9 50.1 85.3

* All trademarks are the property of their respective owners.

Speed-up relative to the original RAIDZ methods

UNIVERSITAT
FREANKFURT AM MAIN

12



8. April 2016

GOETHE E

Summary & Future work e

 Benefits of vectorized RAIDZ methods:
 Faster parity generation
 Faster recalculation of missing data
e Shorter scrub and resilver times
 Increased reliability
e Decreased system acquiring and running costs

e Future work:

 Test and verify the implementation?
e Upstream to ZFS on Linux
 Linear scrub...

1) " A program can be made arbitrarily fast if you relax the requirement of correctness.” - D.Knuth

* All trademarks are the property of their respective owners. 13



GOETHE E

The End UNIVERSITAT
FREANKFURT AM MAIN

Thank you!

Questions?

8. April 2016 * All trademarks are the property of their respective owners. 14



	Vectorized ZFS* RAIDZ Implementation
	FAIR/GSI
	Lustre* & ZFS Motivation
	ZFS RAIDZ levels
	RAIDZ Parity
	RAIDZ Parity Generation
	RAIDZ Data Reconstruction
	Vectorizing GF multiplication
	ZFS RAIDZ-2 Results 
	ZFS RAIDZ-3 Results 
	Profiling with perf and FlameGraph1)
	New RAIDZ Implementations speed-up
	Summary & Future work
	The End

