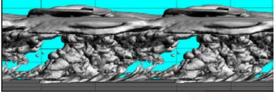
NASA SuperComputing A Ground Based Instrument for Exploration and Discovery

LUG 2015

Bob Ciotti Chief Architect/Supercomputing Systems Lead LUG 2015 - Denver

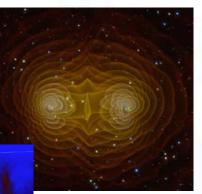
Discussion


- What is Pleiades
- The NASA Workload
- System Build Strategy
- Operational Strategy
- Tools and Analysis Software
- Issues Do We See
- Whats Lustre Does
- What We Want

Supercomputing Support for NASA Missions

- Agency wide resource
- Production Supercomputing
 - Focus on availability
- Machines mostly run large ensembles
- Some very large calculations (50k)
 - Typically o500 jobs running
- Example applications
- ARMD
 - LaRC: Jet wake vortex simulations, to increase airport capacity and safety
 - GRC: Understanding jet noise simulations, to decrease airport noise
- ESMD
 - ARC: Launch pad flame trench simulations for Ares vehicle safety analysis
 - MSFC: Correlating wind tunnel tests and simulations of Ares I-X test vehicle
 - ARC/LaRC: High-fidelity CLV flight simulation with detailed protuberances
- SMD
 - Michigan State: Ultra-high-resolution solar surface convection simulation
 - GSFC: Gravity waves from the merger of orbiting, spinning black holes
- SOMD
 - JSC/ARC: Ultra-high-resolution Shuttle ascent analysis
- NESC
 - KSC/ARC: Initial analysis of SRB burn risk in Vehicle Assembly Building

Detailed CLV


Geometry

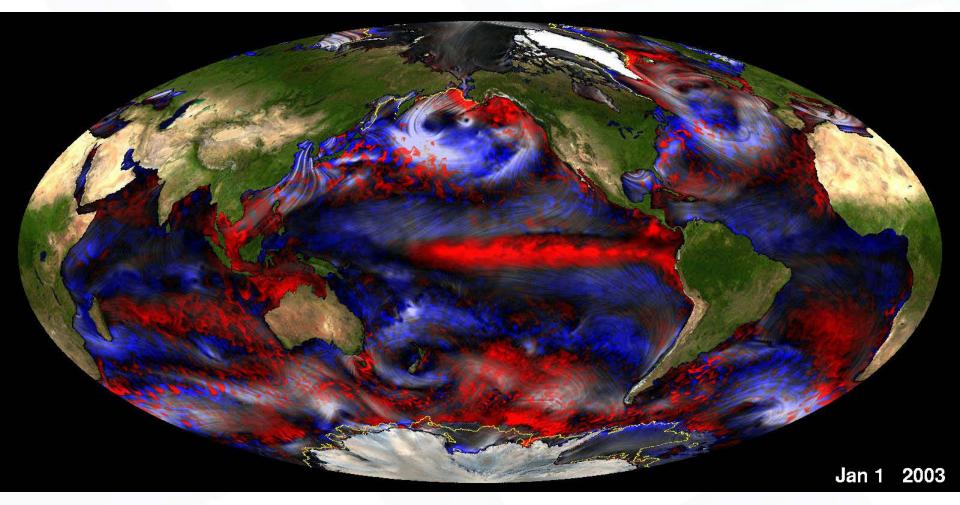
Orbiting, Spinning Black Holes

Jet engine

emissions

noise

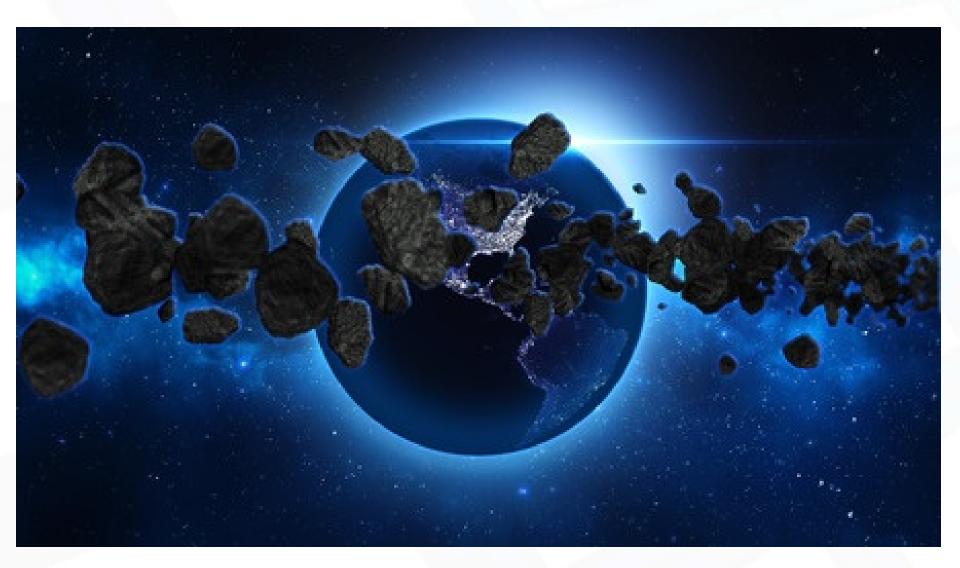
Solar surface convection

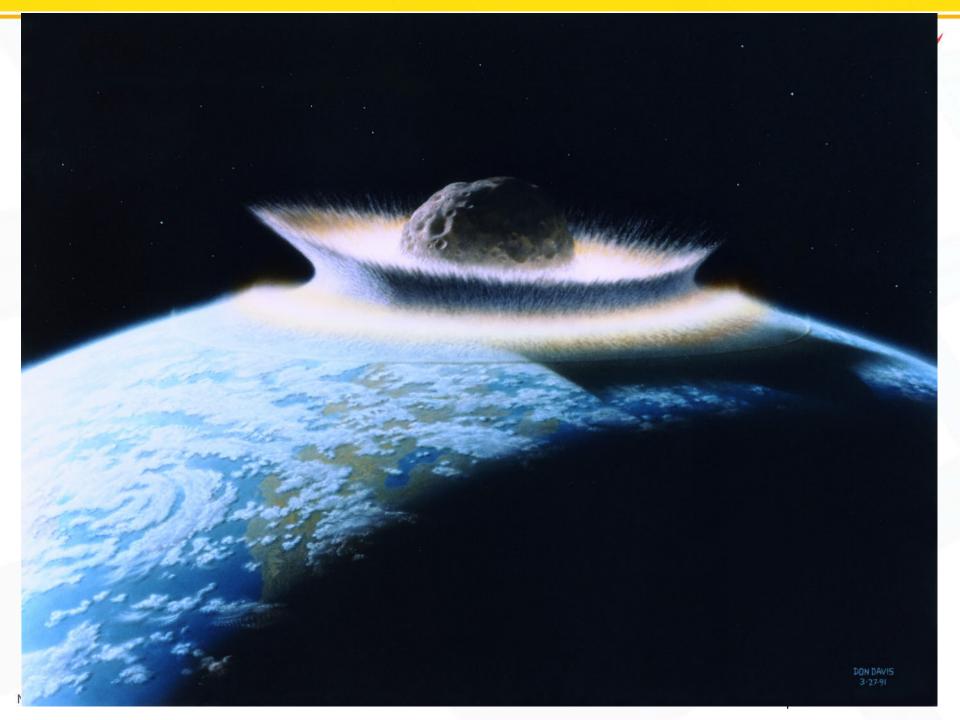

2-SRB Burn in VAB

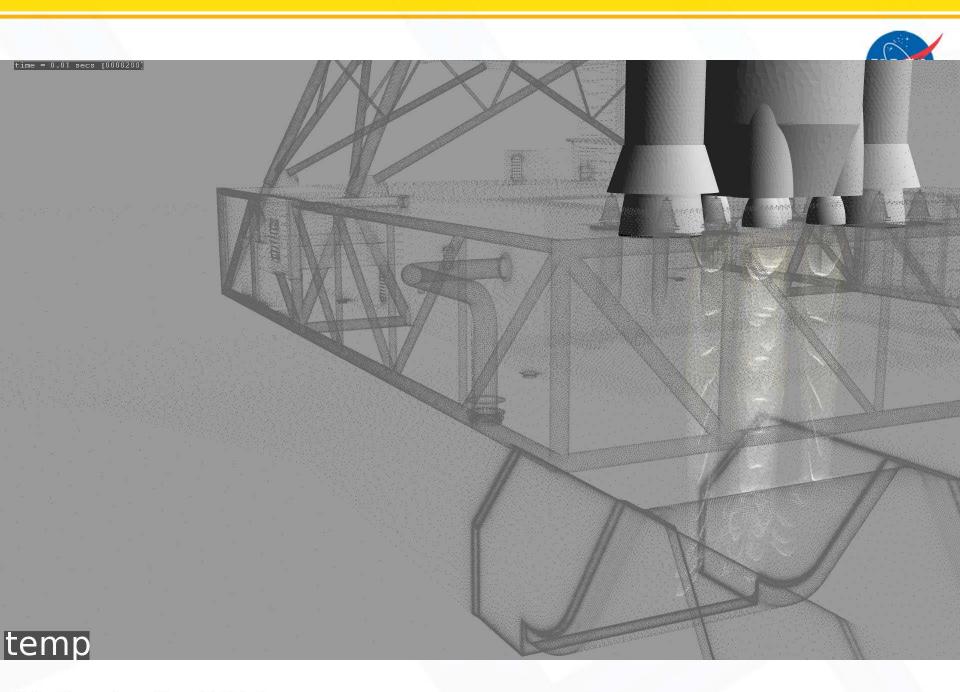
Shuttle Ascent Configuration

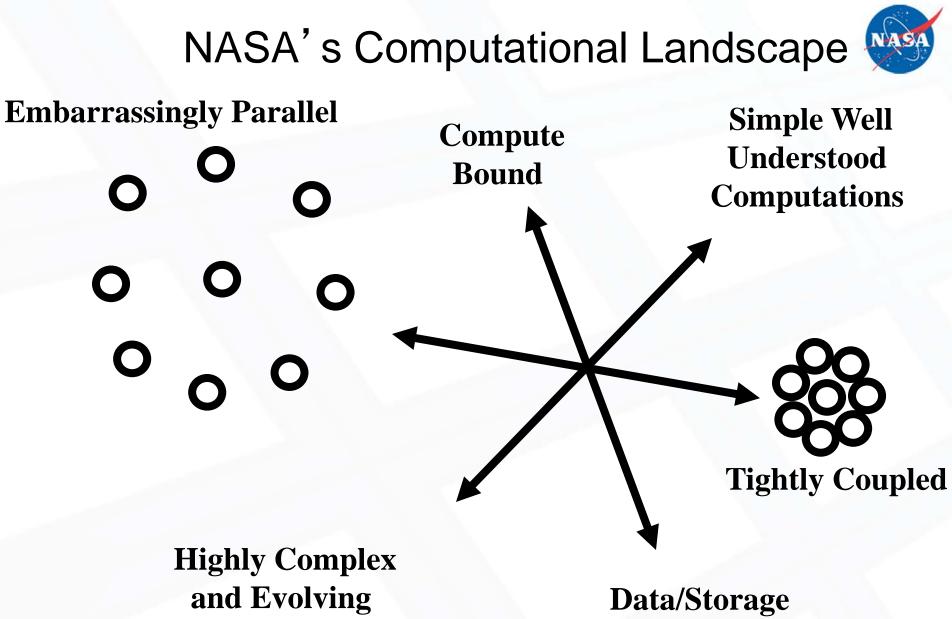
KOI-157 :: Teff = 5685 logg = 4.38 Rs = 1.06

ECCO – Ocean Modeling


ECCO – Ocean Modeling



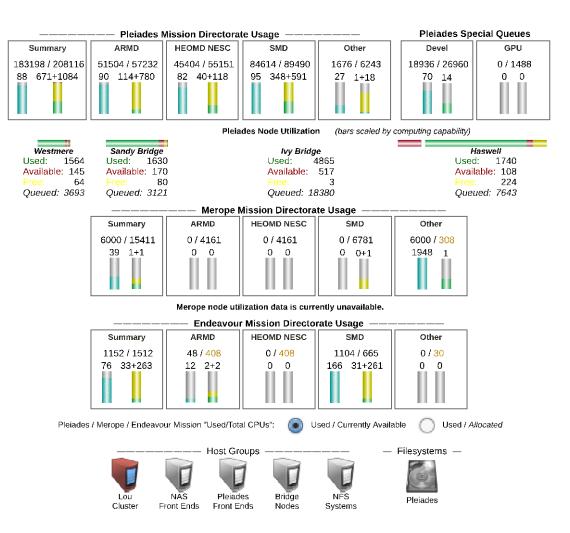

Planetary Defense



Computations

Data/Storage Intensive

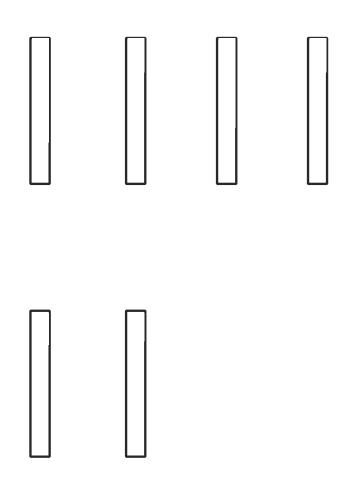
National Aeronautics and Space Administration

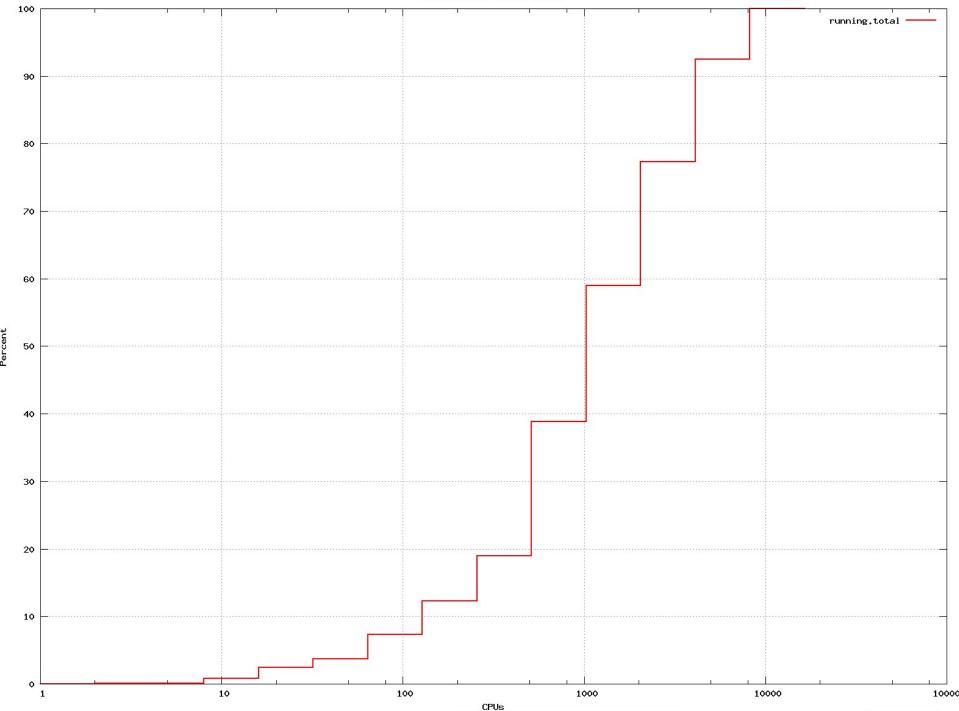

LUG - Denver

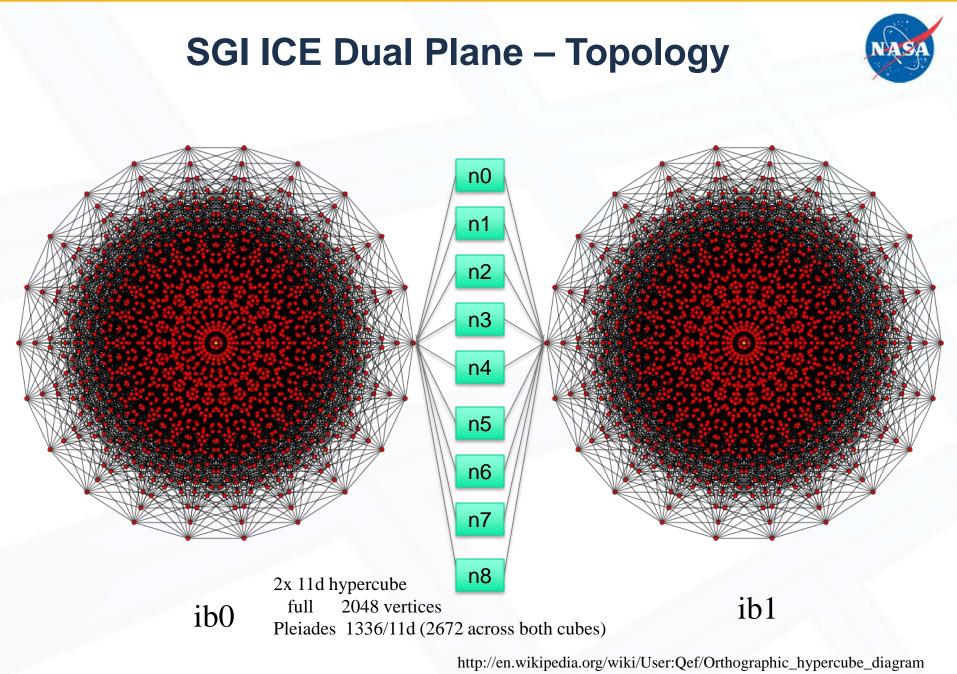
Apr 2015

http://www.nas.nasa.gov/monitoring/hud/realtime/hud.html

NASA Advanced Supercomputing | Systems Status

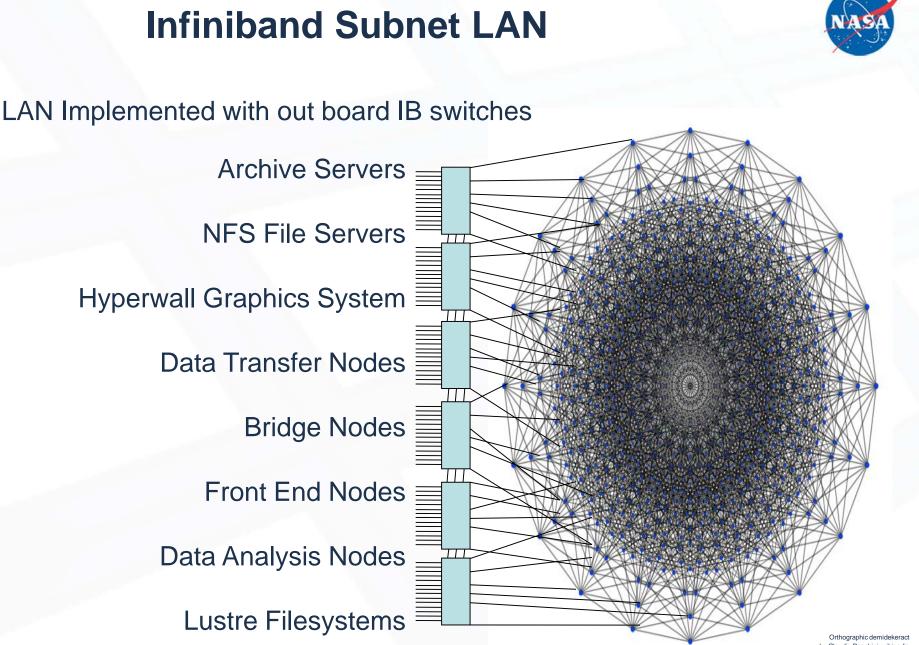

Pleiades


Pleiades

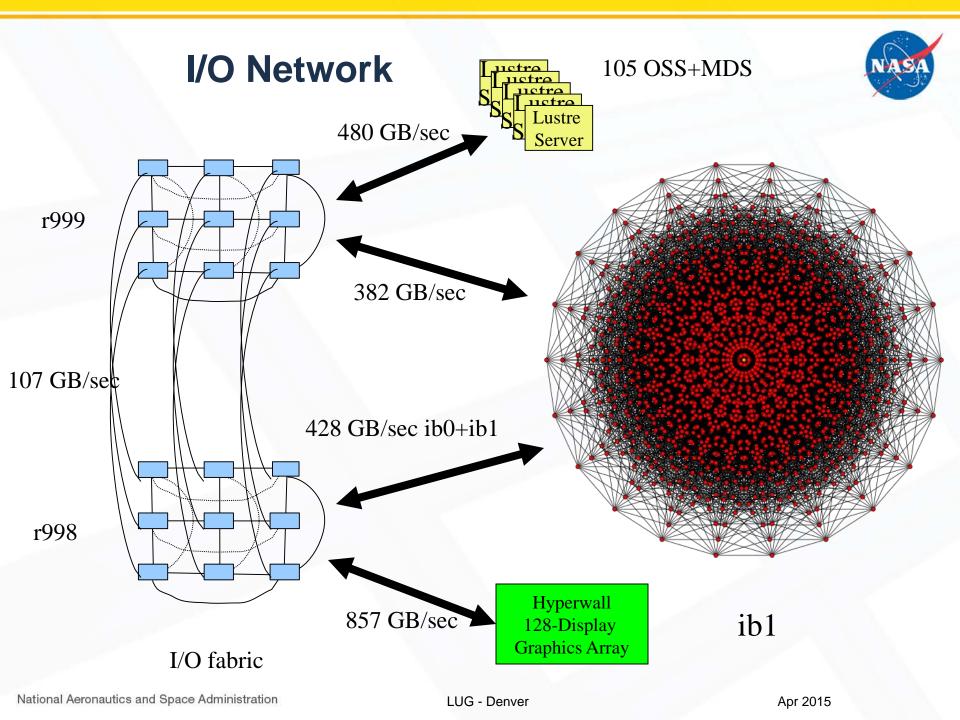


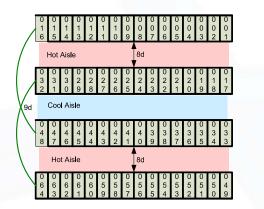
Pleiades

Snapshot Size Distribution



National Aeronautics and Space Administration

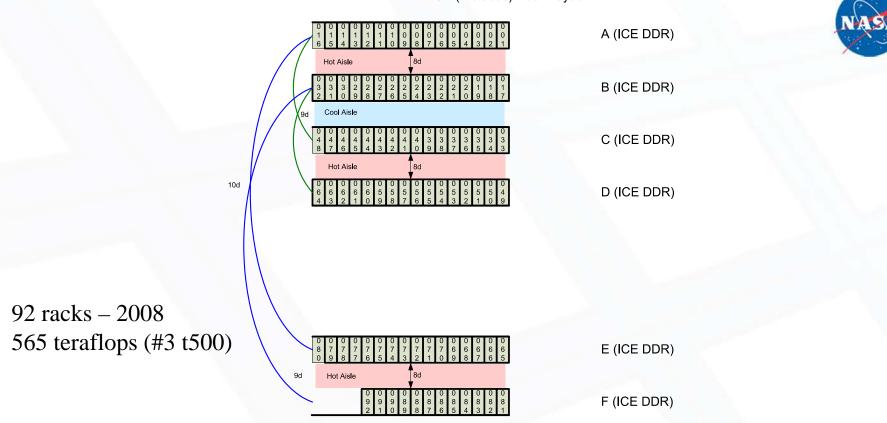

L&G - Denver

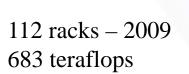

Apr 2015

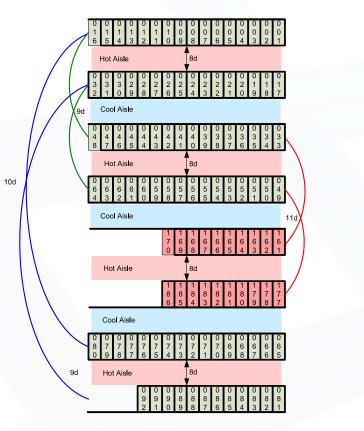
National Aeronautics and Space Administration

Orthographic demidekeract by Claudio Rocchini, wikipedia Copyright GNU http://en.wikipedia.org/wiki/GNU_Free_Documentation_License Creative Commons 3.0 http://creativecommons.org/licenses/by/3.0

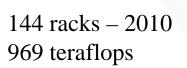
A (ICE DDR)

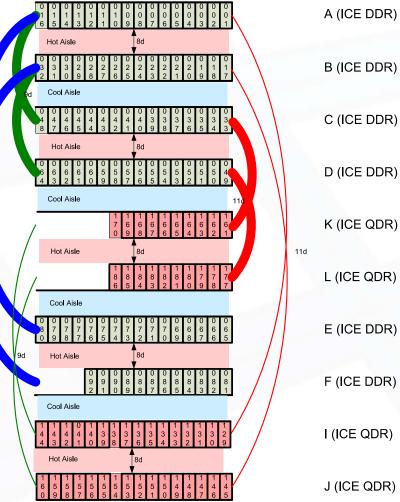

B (ICE DDR)

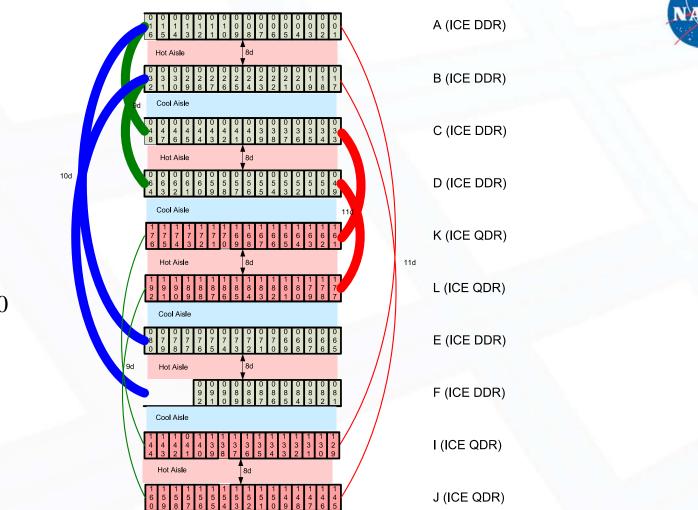

C (ICE DDR)


D (ICE DDR)

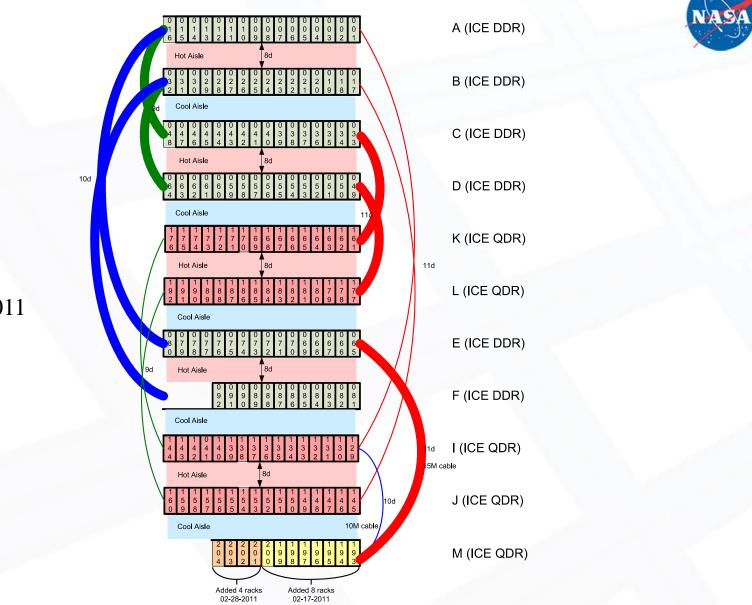
64 racks – 2008 393 teraflops



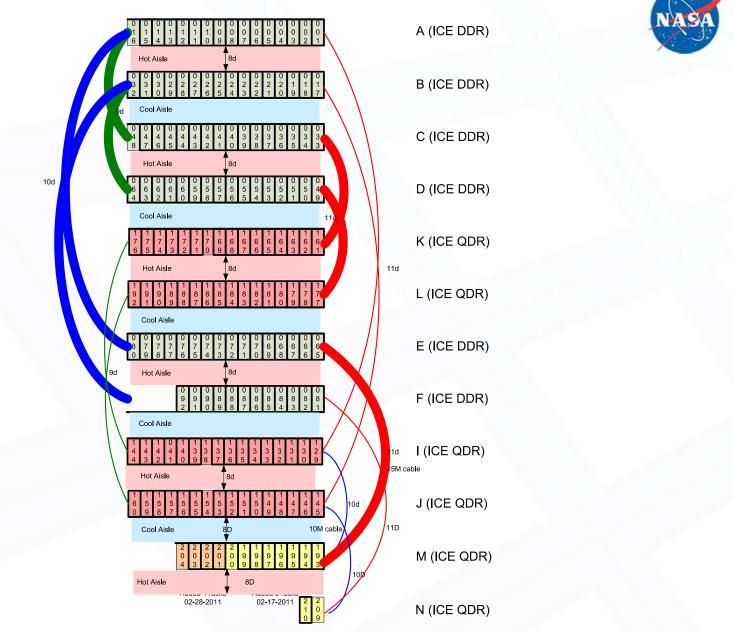




10d

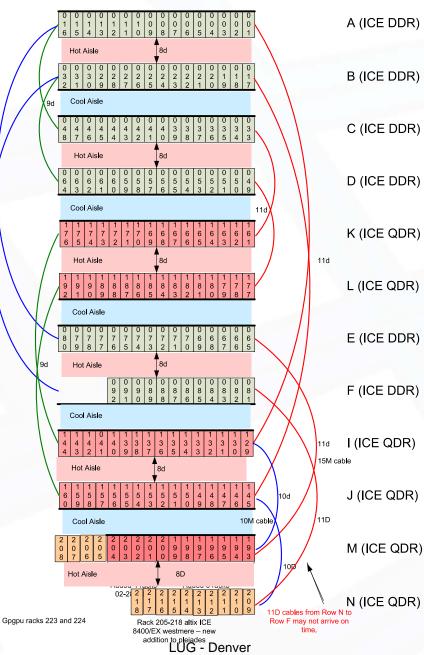


B (ICE DDR) C (ICE DDR) D (ICE DDR) K (ICE QDR) L (ICE QDR) E (ICE DDR) F (ICE DDR) I (ICE QDR) J (ICE QDR)



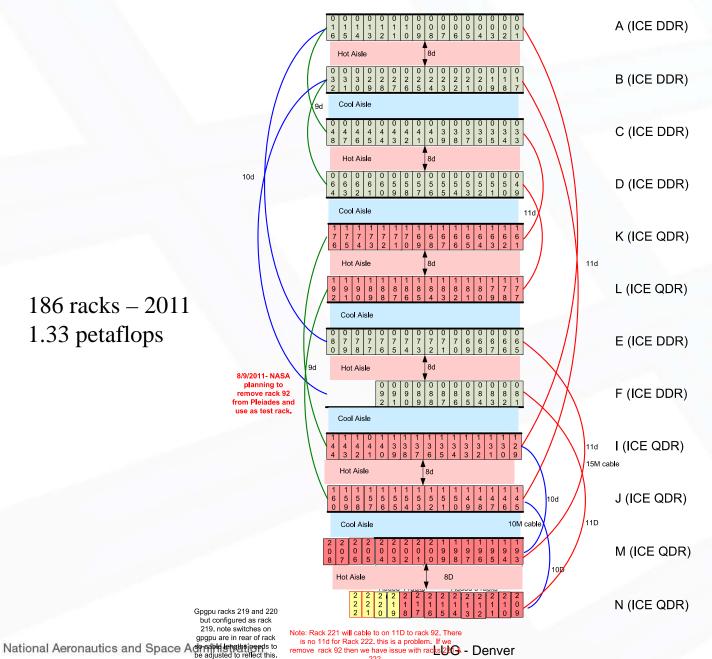
156 racks – 2010 1.08 petaflops

168 racks – 2011 1.18 petaflops



170 racks – 2011 1.20 petaflops

182 racks – 2011 1.31 petaflops


10d

National Aeronautics and Space Administration

Apr 2015

186 racks – 2011 1.33 petaflops

222.

Pleiades - Sustained SpecFP rate base

SpecFP rate base <u>estimates</u> (eliminates cell/GPU/blue-gene/SX vec)

Spec Top500			Machine	CPU #	#Sockets F	PR/Soc	ket TSpec
•	1	2	Jaguar	AMD-2435	37,360	65.2	2,436,246
•	2	6	Tera-100	Intel-7560	17,296	133.4	2,307,805
•	3	5	Hopper	AMD-6176	12,784	149.8	1,800,115
•	4	1	Tianhe-1a	Intel-x5670	14,336	119.5	1,713,868
•	5	11	Pleiades	Intel-x	21,632	72.2	1,562,510
•	6	10	Cielo	AMD-6136	13,394	115.5	1,547,408
•	7	8	Kraken	AMD-2435	16,448	65.2	1,075,182
•	8	14	RedSky	Intel-x5570	10,610	90.3	958,401
•	9	17	Lomonosov	Intel-x5570	8,840	90.3	798,517
•	10	15	Ranger	AMD-2356	15,744	37.3	588,196

Tspec == number of 2-core 296mhz UltraSPARC II

A (ICE DDR)

B (ICE DDR)

C (ICE DDR)

D (ICE DDR)

K (ICE QDR)

L (ICE QDR)

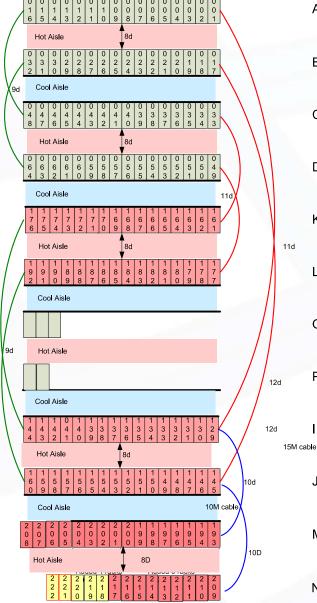
O (ICE FDR)

P (ICE FDR)

I (ICE QDR)

J (ICE QDR)

M (ICE QDR)


N (ICE QDR)

158 racks – 20121.15 petaflopsdeinstall

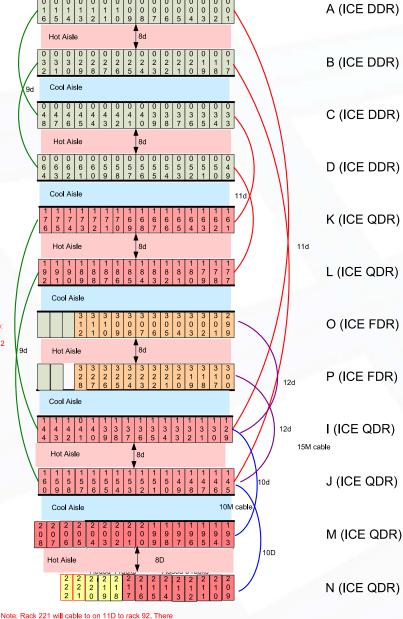
*Note: Harpertown Racks Removed 3/21/2012 in preparation for SGI ICE X Racks installation. I/O Racks remain

10d

Gpgpu racks 219 and 220 but configured as rack 219. note switches on gpgpu are in rear of rack National Aeronautics and Space Observational Aeronautics and Space

Note: Rack 221 will cable to on 11D to rack 92. There is no 11d for Rack 222. this is a problem. If we remove rack 92 then we have issue with racks 200 - Denver 222.

Apr 2015

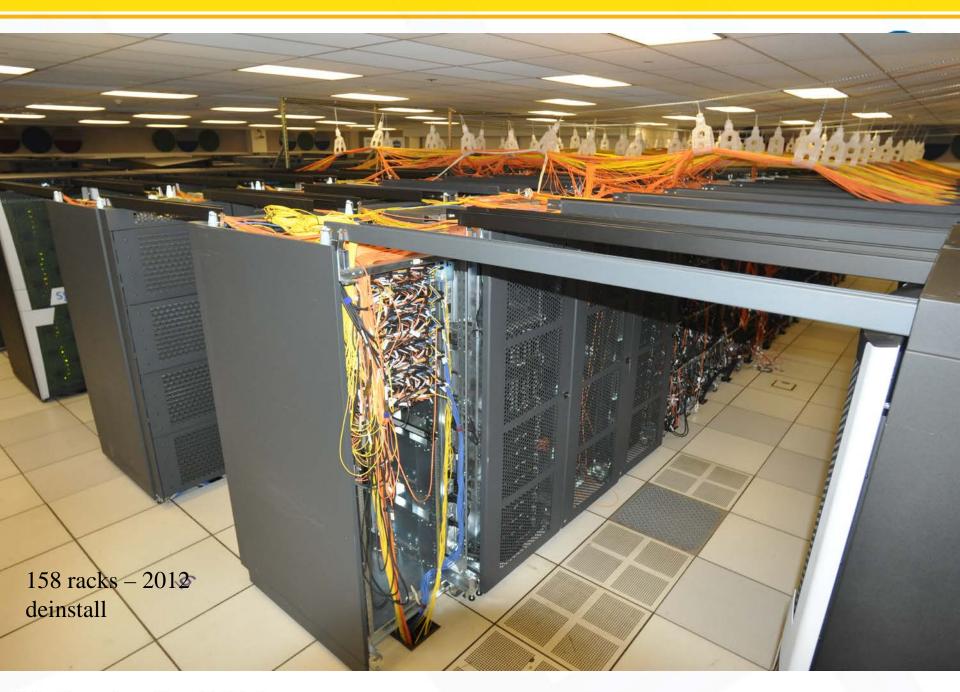


182 racks – 2012 1.7 petaflops

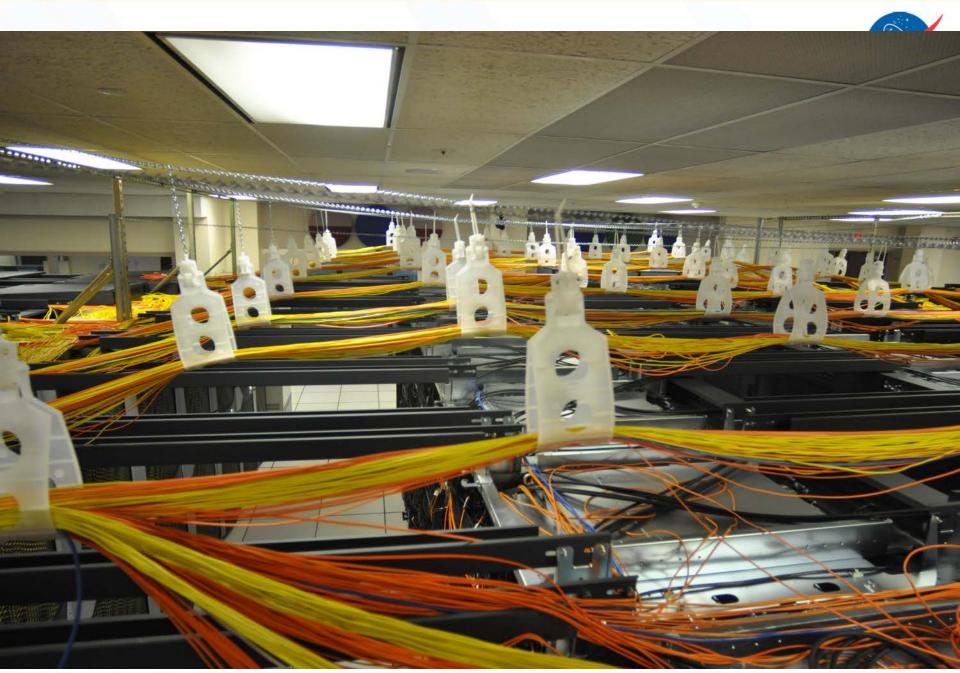
* Install – 3/30/2012 Note: RK 299 and RK 300 are RLC racks. Racks 301-312 and Racks 317-328 are Intel E5 Processors

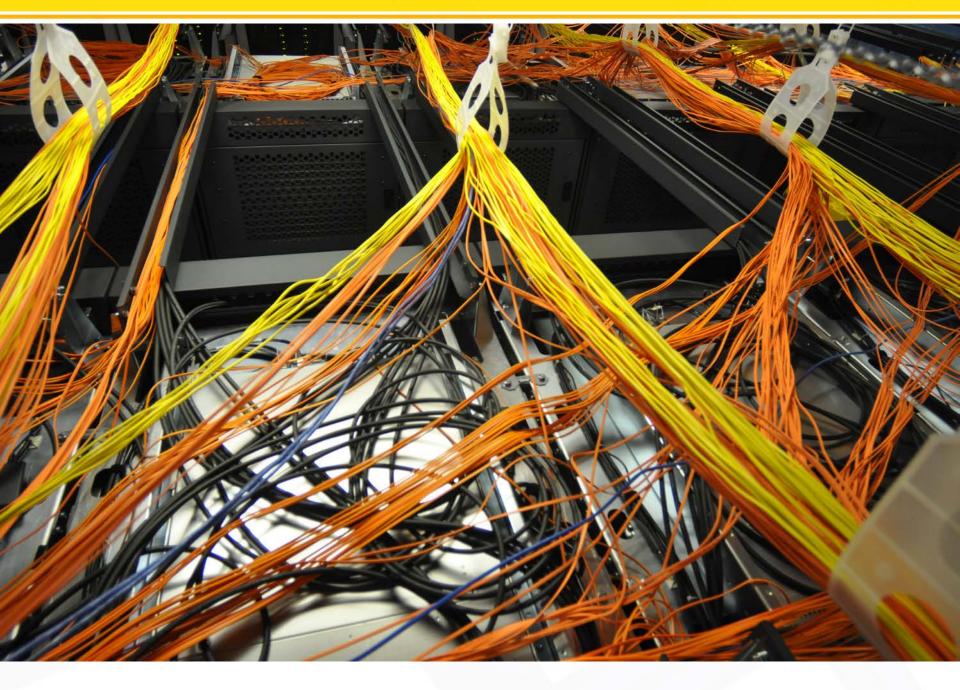
10d

Gpgpu racks 219 and 220 but configured as rack 219. note switches on gpgpu are in rear of rack National Aeronautics and Space be adjusted to reflect this.



is no 11d for Rack 222, this is a problem. If


222.


remove rack 92 then we have issue with racks 20 - Denver

Apr 2015

158 racks – 2012 deinstall

NASA (Pleiades) Rack Layout

11d

6 6 6 5 4 3

6 6 6

64 rack deinstall 2013

* Install – 3/30/2012 Note: RK 299 and RK 300 are RLC racks. Racks 301-312 and Racks 317-328 are Intel E5 Processors

Cool Aisle

Hot Aisle

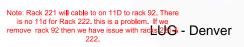
Cool Aisle

Hot Aisle

Cool Aisle

Hot Aisle

Cool Aisle

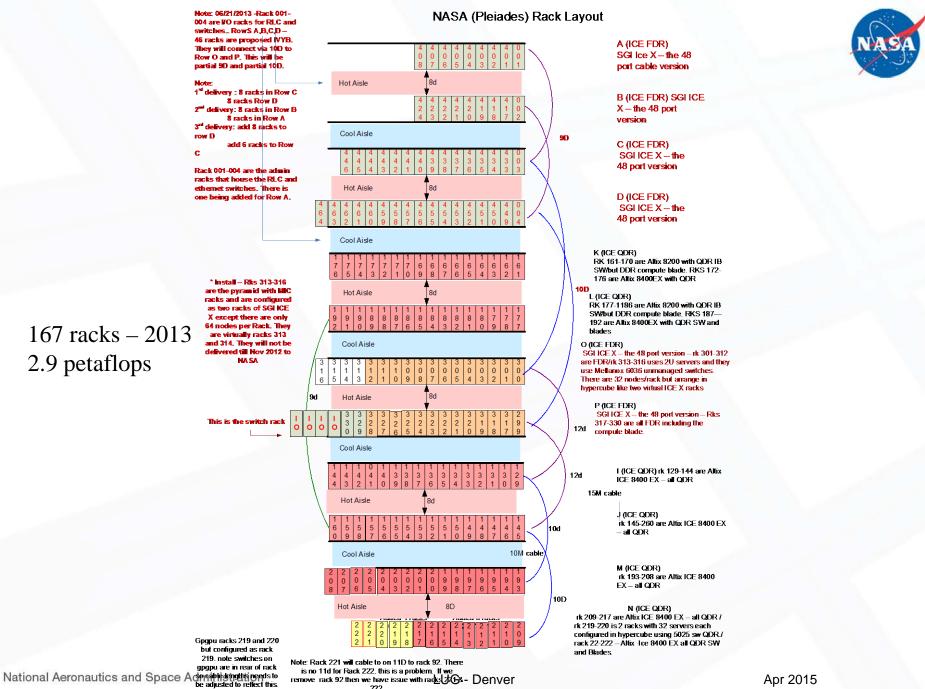

Hot Aisle

0

9

9d

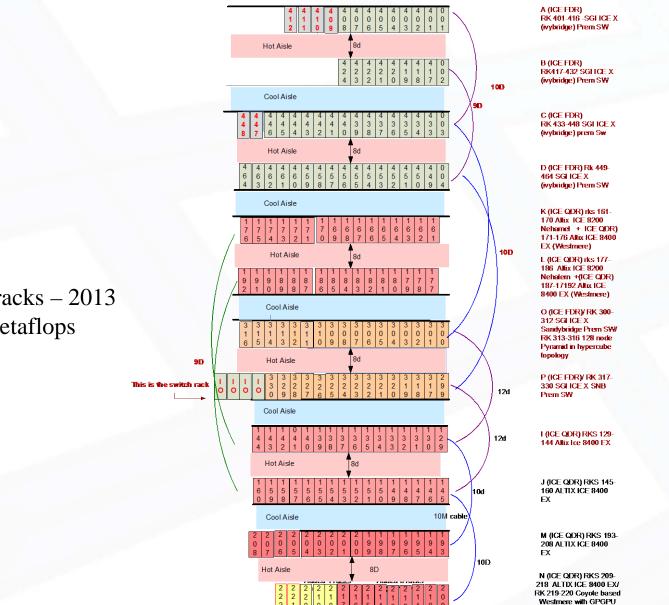
8d



12d

10d

10D


10M cable

remove rack 92 then we have issue with racks 21G& - Denver

222

NASA (Pleiades) Rack Layout as of 12/30/2013

160 racks - 20133.1 petaflops

M2090 in hypercube. RK 221-222 Altix ICE 8400 EX

NASA (Pleiades) Rack Layout as of 1/30/2014

0 0

1 0 9

1 2 0 0 0 0 0 0 0 0 0 7 6 5 4 3 2 1 1 Hot Aisle 4 4 4 3 3 3 2 1 0 2 9 2 Cool Aisle 9D Hot Aisle 4 5 0 5 0 9 4 Cool Aisle 6 5 Hot Aisle 8d 8 8 8 9 Cool Aisle 0 0 6 Hot Aisle 9D This is the switch rack 2 2 Cool Aisle 1 0 9 4 2 Hot Aisle 8d 6 10d 10M cable Cool Aisle 10D Hot Aisle 8D

B (ICE FDR) RK417-432 SGLICE X (ivybridge) Prem SW C (ICE FDR) RK 433-448 SGLICE X (ivybridge) prem Sw D (ICE FDR) Rk 449-464 SGLICE X (ivybridge) Prem SW E (ICE FDR) rks 465-468 SGLICE X lvybridge Prem SW - K ICE QDR) 171-176 Altix **ICE 8400 EX** F (ICE FDR) rks 481-483 SGLICE X Ivybrodge Prem SW L-ICE QDR) 187-17192 Altix ICE 8400 EX O (ICE FDR)/ RK 300-312 SGLICE X Sandybridge Prem SW/ RK 313-316 128 node Pyramid in hypercube topology P (ICE FDR)/ RK 317-330 SGLICE X SNB Prem SW

A (ICE FDR) RK 401-412 -SGLICE X

10D

10D

12d

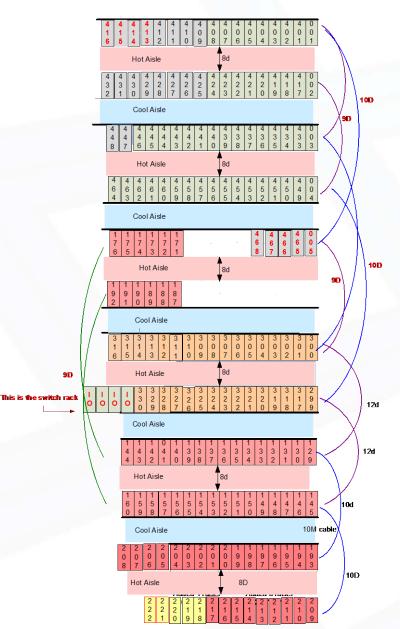
12d

(ivybridge) Prem SW

I (ICE QDR) RKS 129-144 Altix Ice 8400 EX

J (ICE QDR) RKS 145-160 ALTIX ICE 8400 EX

M (ICE QDR) RKS 193-208 ALTIX ICE 8400 ΕX


N (ICE QDR) RKS 209-218 ALTIX ICE 8400 EX/ RK 219-220 Coyote based Westmere with GPGPU M2090 in hypercube. RK 221-222 Altix ICE 8400 EX

168 racks - 20133.2 petaflops

National Aeronautics and Space Administration

NASA (Pleiades) Rack Layout as of 2/18/2014

168 racks – 2014 3.3 petaflops

A (ICE FDR) RK 401-416 -SGI ICE X (ivybridge) Prem SW

RK417-432 SGLICE X

(ivybridge) Prem SW

D (ICE FDR) Rk 449-

(ivybridge) Prem SW

E (ICE FDR) rks 465-468 SGLICE X

F (ICE FDR) rks 481-483 SGLICE X Ivybrodge Prem SW L-

ICE QDR) 187-17192

O (ICE FDR)/ RK 300-

RK 313-316 128 node

Pyramid in hypercube topology

P (ICE FDR)/ RK 317-

I (ICE QDR) RKS 129-

144 Altix Ice 8400 EX

J (ICE QDR) RKS 145-160 ALTIX ICE 8400

M (ICE QDR) RKS 193-208 ALTIX ICE 8400

N (ICE QDR) RKS 209-218 ALTIX ICE 8400 EX/ RK 219-220 Coyote based Westmere with GPGPU M2090 In typercube. RK 221-222 Altix ICE 8400 EX

330 SGLICE X SNB

Prem SW

EX

ΕX

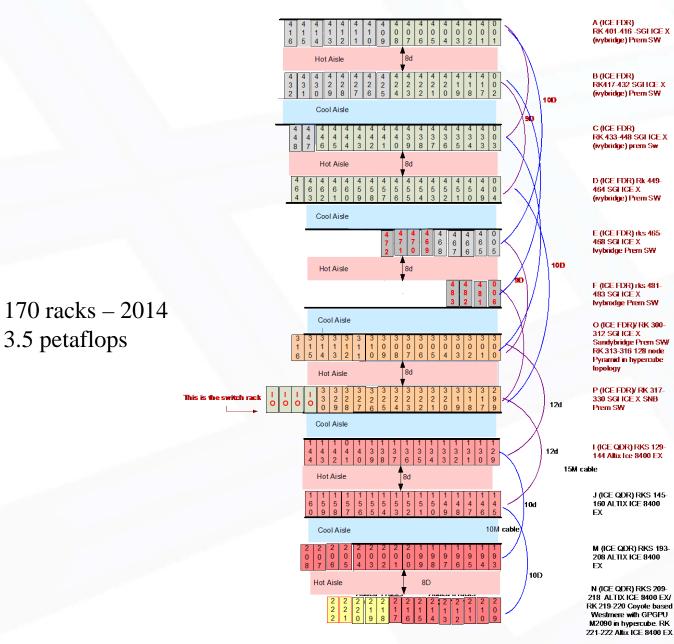
Altix ICE 8400 EX

312 SGLICE X Sandybridge Prem SW/

Ivybridge Prem SW – K ICE QDR) 171-176 Altix

464 SGLICE X

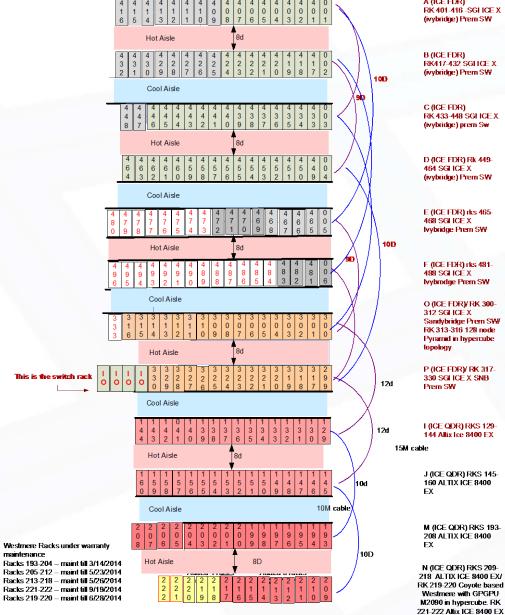
ICE 8400 EX


B (ICE FDR)

C (ICE FDR) RK 433-448 SGI ICE X (ivybridge) prem Sw

National Aeronautics and Space Administration

NASA (Pleiades) Rack Layout as of 2/25/2014



NASA (Pleiades) Rack Layout

A (ICE FDR) RK 401-416 -SGLICE X (ivybridge) Prem SW

168 racks - 20144.5 petaflops

National Aeronautics and Space Administration

NASA (Pleiades) Rack Layout

0

0 0

0

1

0 0 0

A (ICE FDR) RK 401-416 -SGLICE X (ivybridge) Prem SW

RK417-432 SGLICE X

(ivybridge) Prem SW

D (ICE FDR) Rk 449-

E (ICE FDR) rks 465-472 SGLICE X lvybridge Prem SWRK

573-580 Haswell Prem

F (ICE FDR) rks 481-483 SGLICÉ X

Ivybrodge Prem SW

Rks 584-590 Haswell

O (ICE FDR)/ RK 300-

RK 313-316 128 node Pyramid in hypercube

P (ICE FDR)/ RK 317-

330 SGLICE X SNB Prem SW

I (ICE FDR) RKS 509-

516 SGLICE X - HSW

J (ICE QDR) RKS 145-160 ALTIX ICE 8400

M (ICE QDR) RKS 193-

208 ALTIX ICE 8400

N (ICE QDR) RKS 209-

Westmere with GPGPU

221-222 Altix ICE 8400 EX

EX

ΕX

Prem SW

topology

312 SGLICE X Sandybridge Prem SW/

464 SGLICE X (ivybridge) Prem SW

SW

B (ICE FDR)

C (ICE FDR) RK 433-448 SGLICE X (ivybridge) prem Sw

1 1 1 1 1 6 5 4 3 2 0 0 9 8 0 6 5 4 3 2 7 Hot Aisle 4 4 4 4 4 3 3 3 2 2 2 1 0 9 8 4 2 2 2 10D Cool Aisle Hot Aisle 4 0 Q 4 Cool Aisle 6 6 6 0 6 6 9 5 5 10D Hot Aisle 8d 8 8 Cool Aisle 0 11D Hot Aisle This is the switch rack Cool Aisle 11/02/2014 - reorrive 16 racks of WSM - rks 129-12d 144 and replace with racks 509-516 haswell 15M cable Hot Aisle 10d 10d 10M cable Cool Aisle 10/20/2014 - note Row M racks 193-208 turned off 10D Hot Aisle 8D 218 ALTIX ICE 8400 EX/ RK 219-220 Coyote based M2090 in hypercube. RK

168 racks - 20155.4 petaflops

National Aeronautics and Space Administration

Pleiades 2015 – Based on MemoryBW (ignore GPU/PHI)

		11/14		Mem BW			Mem BW	Mega			
Machine	Туре	T500	Sockets	Туре	Socket	Spec Socket	(PB/Sec)	Spec	Rmax	Rpeak	PctPeak
K computer	Sparc64	4	88,128	VIII fx	64.0	373.2	5,640	32.9	10,510	11,280	93.2%
Sequoia	BGQ/Power	3	98,304	BGQ-A2	42.7	144.3	4,198	14.2	17,173	20,132	85.3%
BlueWater	XK6/XK7		49,200	6276	51.2	176.0	2,519	8.7		71,378	
Mira	BGQ /Power	5	49,152	BGQ-A2	42.7	144.3	2,099	7.1	8,586	10,066	85.3%
Tianhe-2	Xeon/Xeon Phi	1	32,000	E5-2692v2	59.7	321.5	1,910	10.3	33,862	54 <i>,</i> 902	61.7%
Pleiades	SGI/Xeon Mix	11	22,896	XeonMix	54.8	283.7	1,255	6.5	3,375	3,987	84.7%
Juqueen	BGQ/Power	8	28,672	BGQ-A2	42.7	144.3	1,224	4.1	5,008	5,872	85.3%
Secret2	XC30/Xeon	13	18,832	E5-2697v2	59.7	341.0	1,124	6.4	3,143	4,881	64.4%
Vulcan	BGQ/Power	9	24,576	BGQ-A2	42.7	144.3	1,049	3.5	4,293	5,033	85.3%
Titan	XK7/Opteron/K20x	2	18,688	6274	51.2	173.0	957	3.2	17,590	27,112	64.9%
SuperMUC	iData/Xeon	14	18,432	E5-2680	51.2	244.5	944	4.5	2,897	3,185	91.0%
Pangea	SGI/Xeon	20	13,800	E5-2670	51.2	240.5	707	3.3	2,098	2,296	91.4%
Stampede	Dell/Xeon/Phi	7	12,800	E5-2680	51.2	244.5	655	3.1	5,168	8,520	60.7%
Hornet	XC40/Xeon	16	7,884	E5-2680v3	68.0	396.5	536	3.1	2,763	3,784	73.0%
Tianhe-1A	Xeon/Nvidia2050	17	14,336	X5670	32.0	132.0	459	1.9	2,566	4,701	54.6%
Secret1	CS/Xeon/K40	10	7,280	E5-2660v2	59.7	287.5	435	2.1	3,577	6,131	58.3%
HPC2	iData/Xeon/K20x	12	7,200	E5-2680v2	59.7	313.0	430	2.3	3,188	4,605	69.2%
Excalibur	XC40/Xeon	19	6,254	E5-2698v3	68.0	434.0	425	2.7	2,485	3,682	67.5%
Piz Daint	XC30/Xeon/K20x	6	5,272	E5-2670 snb	51.2	240.5	270	1.3	6,271	7,788	80.5%
Cascade	Xeon/Xeon Phi	18	1,880	E5-2670	51.2	240.5	96	0.5	2,539	3,388	74.9%
Tsubame	Nec/Xeon/K20x	15	2,816	X5670	32.0	132.0	90	0.4	2,785	5,735	48.6%

Numbers in Red are sWAG

Pleiades Environment

- 11,280 compute nodes 22,560 sockets 211,360 x86 cores
- 128 visualization nodes
- 192 GPU Nodes
- 192 Xeon Phi Nodes
- 10 Front End Nodes
- 4 "Bridge Nodes"
- 4 Archive Front Ends
- 8 Data Analysis Nodes
- 8 Archive Nodes
- 2 large memory nodes 2 TB + 4 TB
- Everything cross mounted. NFS Home, Modules, Nobackup (NFS, lustre)
- + a couple hundred administration/management nodes of various types.

Pleiades /nobackup Filesystems (production)

Filesystem	#OST	#OSS	Size (PB)	Write BW	Read BW	controller
p5	180	12	2.2	19	15	DDN SFA10k
p6	180	12	1.3	17	14	DDN SFA10k
р7	84	18	1.9	18	18	NetApp 5400
p8	312	26	7.1	65	52	NetApp 5400
p9	240	18	3.5	22	21	DDN SFA10k
	996	86	16.0	141	120	

NFS

National Aeronautics and Space Administration

Incremental Expansion – Driving Factors

- Annual Funding/Budget Uncertainty
- Synthetic Leases/Sarbanes-Oxley cost
- Risk Mitigation for Fast moving technology
- Supports Short Lead/Opportunistic Strategy
- Timed adoption based on technology readiness
- Decouples technologies on different development cycles
- Dynamic project support

Maintains leading edge components throughout our "Ground Based Instrument"

National Aeronautics and Space Administration

Production Software Environment

- 4 different production selectable operating systems
 - AOE: 3 sles, centos
 - Additional test images
- 251 different loadable modules
 - 58 different compilers (32 intel, 8 PGI, 4 gcc, 3 cuda, 3 matlab...)
 - 26 different MPIs (10 SGI MPT, 12 Intel MPI, 8 MVAPICH)
 - 23 libraries (13 hdf, 6 netcdf, 4 mkl)
- Various debuggers, performance analyzers, plotting/graphing, editors
- Driven by user requests/requirements

This is an HPC Cloud

What is Todays General Purpose Supercomputer

- 1980s/1990s a monolithic system with limited access
 - Typically served smaller communities
 - Local dedicated disk with limited network connectivity
- Today its a collection of heterogeneous elements both SW & HW
 - Supports a wide variety and types of computation
 - Tuned for user productivity

- General Purpose a compromise in some ways
 - MAY not be the #1 top 500 machine
 - But should be the most productive for highly varied requirements in multiple science and engineering domains.

Continuous Availability 24/7 Operations

- Goal never take the whole system down
 - Outages are very disruptive
 - Dedicated time very costly
 - Not even possible to update entire system in one dedicated session.
 - Things go wrong
- Components
 - Lustre, NFS, CXFS, OFED, OpenSM, Linux Distro patches, cluster management software,
 - Firmware
 - its in everything including the cables.

Continuous Availability 24/7 Operations

- Rolling updates of various components
 - Lustre/NFS clients/compute node images
 - Easy simply done at end of user job
 - NFS, Lustre servers
 - Hot swap
 - -Nfs hard mounts
 - -Lustre recovery
 - -Suspend/Resume
 - Schedule filesystems as a resource in addition to nodes
 - Allow us to use all compute nodes and figure out share later
- Various admin, front ends, bridge nodes are easier or less urgent.

Continuous Availability 24/7 Operations

- Hot Plug Grow system while in operation
 - Cable up new components powered off
 - Check cabling
 - Signal OpenSM to turn off sweep
 - Power on equipment
 - Run ibnetdiscover to verify cabling
 - Signal OpenSM to sweep
 - Mount file systems and go
- Cable Maintenenace

PBS Lustre Stats

Exiting at : Sat Mar 14 14:34:55 2015

				======	=====		======			 =====
LUSTR	E Filesy	stem S	statistic	5						
nbp8	Metadat	a Oper	ations							
о	pen	close	sta	t statf	s read	(GB) wi	rite (GB)			
1056	469 10	56469	105834	9 0	27	4 :	312			
Read	4KB	8KB	16KB	32KB	64KB	128KB	256KB	512KB	1024KB	
	114	147	1	16	9	29	144	748	48185	
Write	4KB	8KB	16KB	32KB	64KB	128KB	256KB	512KB	1024KB	
	5091	51	51	353	36	48	2120	49	297141	

Job Resource Usage Sumr	nary for 3075801.pbspl1.nas.nasa.gov							
CPU Time Used	: 259:36:54							
Real Memory Used	: 37024436kb							
Walltime Used	: 10:52:49							
Exit Status	: 0							
Number of CPUs Requested : 816								
Walltime Requested	: 24:00:00							
Execution Queue	: sls_aero1							
Charged To	: e0847							
Job Stopped	: Sat Mar 14 14:35:36 2015							

National Aeronautics and Space Administration

File Transfer - Shiftc

- File transfers have become quite complex:
 - Best source/destination
 - Systems have multiple interfaces want to pick best one
 - Threading
 - Big performance wins by parallelizing within a node
 - Big performance wins by parallelizing across nodes
 - Error checking
 - Checksum
 - Partial resend for hash mismatches
 - Ability to save partial hash to detect location of corruptions
 - Restart/Completion
 - Systems fail or reboot
 - Will restart transfer and notify upon completion
 - Alternative to lustre-hsm, but some potential application...
 - Multi GB/sec transfer within a filesystem
 - Working on similar capability to DMF Archive
- Credit: Paul Kolano

Log File Analysis

- Lumber Tool written to go through all the log file data (GBs/day)
 - Lustre logs
 - Server and Clients
 - PBS Logs
 - Console Logs
 - System Logs
 - Absolutely necessary to track system issues
- Can specify a job ID and get all the log information across all systems during that timeframe.
- Can do arbitrary searches across all logs

Credit: Dave Barker

National Aeronautics and Space Administration

Daily Failure Logs – Past 24 hours

Daily Report for 04/10/2015 on pbspl1 Job Failure Summary from Fri Apr 10 00:00:00 2015 to Fri Apr 10 23:59:59 2015

There were 3197 jobs in the time region, of which 22 indicate as failed.

The total SBUs of these jobs was 500795.64, of which 6.70 (%0.00) belonged to the failed jobs.

Job Failure Summary Sorted by Frequency of Failure Types:

Count	UID/G	ID SBUs	Failure type
8	6/6	0.00 (% 0.00)	head node lost connection with a sister node
6	5/5	6.38 (% 0.00)	job experienced out of memory (oom)
5	3/3	0.00 (% 0.00)	the PBS Server discarded the job because it appeared a node was down
1	1/1	0.05 (% 0.00)	job produced too much spool output (stdout/stderr)
1	1/1	0.28 (% 0.00)	PBS unable to start job
1	1/1	0.00 (% 0.00)	PBS server lost connection with head node

Weekly Failure Logs – Past 24 hours

Daily Report for last 7 days to 04/10/2015 on pbspl1 Job Failure Summary from Sat Apr 4 00:00:00 2015 to Fri Apr 10 23:59:59 2015 There were 14650 jobs in the time region, of which 148 indicate as failed. The total SBUs of these jobs was 3598210.40, of which 239289.38 (%6.65) belonged to the failed jobs.

Job Failure Summary Sorted by Frequency of Failure Types:

UID/	/GID SBUs Failure type
19/17	7 480.60 (% 0.01) job experienced out of memory (oom)
3/3	0.00 (% 0.00) job start error 15010, node could not JOIN_JOB successfully
5/5	1361.84 (% 0.04) job produced too much spool output (stdout/stderr)
6/6	0.00 (% 0.00) the PBS Server discarded the job because it appeared a node was down
6/6	0.00 (% 0.00) head node lost connection with a sister node
5/5	0.00 (% 0.00) the PBS Server discarded the job for unknown reasons
4/2	145034.72 (% 4.03) MPT error - receive completion flushed
2/2	210.25 (% 0.01) node had RCU sched stalls
3/2	46686.32 (% 1.30) MPT error - MPI_SGI_ctrl_recv failure
5/5	1553.60 (% 0.04) node dropped into kdb
3/3	6074.78 (% 0.17) MPT error - xmpi_net_send failure
3/3	3584.49 (% 0.10) job experienced uncorrectable ecc memory error
2/2	90.62 (% 0.00) at least one node associated with the job booted for unknown reasons
2/2	0.00 (% 0.00) mlx4 internal error
2/2	0.26 (% 0.00) PBS server lost connection with head node
1/1	34110.72 (% 0.95) MPT error - continuous IB fabric problems
1/1	47.64 (% 0.00) MPT error - network error in starting shepherd
1/1	53.27 (% 0.00) MPT error - shepherd terminated
1/1	0.28 (% 0.00) PBS unable to start job
	19/1 3/3 5/5 6/6 5/5 4/2 2/2 3/2 5/5 3/3 2/2 2/2 2/2 2/2 1/1 1/1 1/1

Every 1.0s: abracadabra -i 1 Mar 26 00:31:37 2012

io_swx	nbp1 read	write	nbp2 read	write	nbp3/4 read	write	nbp5 read	write	nbp6 read	write	tot read	write	
r999i_mds	0.7	0.4	2.4	1.4	16.7	11.5	0.3	0.3	1.3	0.7	20.7	13.9	
r999i_oss1	2.3	6.5	18.4	208.5	4.1	11.6	2.2	2.2	2.3	2.3	11.0	22.6	
r999i_oss2	3.5	122.1	2.8	51.3	2.5	7.0	2.2	2.3	2.3	2.3	13.4	184.9	
r999i_oss3	2.3	9.7	16.0	39.7	2.5	4.8	2.2	2.2	2.3	3.2	25.3	59.6	
r999i_oss4	2.3	8.1	79.9	34.1	2.4	4.0	2.2	2.2	2.3	2.2	89.2	50.7	
r999i_oss5	2.4	9.0	2.7	42.5	2.2	10.4	2.2	2.2	2.2	2.3	11.7	66.4	
r999i_oss6	2.3	10.6	6.4	38.7	2.2	5.6	2.2	2.2	2.2	2.2	15.5	59.4	
r999i_oss7	2.3	10.6	6.3	23.5	2.2	12.3	2.2	2.2	2.2	2.2	15.3	50.8	
r999i_oss8	2.3	10.2	270.5	35.7	2.2	7.1	2.2	2.2	2.2	3.2	279.3	58.4	
Total	20.4	187.2	405.4	475.4	37.0	74.3	17.9	18.0	19.3	20.6	481.4	566.7	
Max	2809.2	16138.9	5943.9	5003.6	2310.6	4719.3	50.9	171.3	14930.3	15173.6	15127.3	16845.9	
Max	RcvData:	1514.8 8	451.6 3319	9.8 1252.6	5 6261.4	7874.4 142	207.8 3903	8.5 10441	4 8181.3	6720.7 54	473 . 9 7.1	3.6 9.	2

Total RcvData: 0.1 62.4 4.1 6.0 5.7 14.4 52.2 22.8 128.4 18.4 171.4 288.3 0.3 0.1 0.3 0.0 0.2 0.3 0.3 0.3 1.3 777.6 15.0 0.3 0.3 0.3 Total XmitData: 0.1 17.7 11.2 6.4 6.3 105.0 15.0 8.9 9.8 2.8 301.8 0.1 0.1 0.3 0.2 0.4 1.3 502.7

Max XmitData: 14.1 1393.7 6645.3 3405.3 1478.8 5506.1 13417.8 1675.2 2846.6 2498.5 1365.8 1210.5 8.8 2.0 6.9 3.8 10.4 1.2 8.9 2.1 4.7 15130.8

r999i mds . r41i0 r49i1 r57i1 r17i0 r25i0 r129i0 r137i0 r145i0 r153i0 r9i0 oss1 oss1 oss2 oss2 oss3 oss3 oss6 oss6 hwsw0 tot . 0.2 0.2 2.0 0.3 1.2 0.0 8.5 0.1 r999i mds RcvData: 0.0 0.6 0.4 0.1 0.7 0.1 0.1 0.0 0.2 0.1 0.2 0.1 0.0 15.1 r999i mds XmitData: 0.0 1.9 1.3 0.9 0.2 0.1 1.2 2.2 0.3 2.1 0.0 11.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 22.2

r999i oss1 r41i3 r49i3 r57i3 r17i3 r25i3 r129i3 r137i3 r145i3 r153i3 r1i3 r9i3 oss2 oss2 mds mds oss4 oss4 oss7 oss7 hwsw1 tot r999i oss1 RcvData: 0.0 5.2 0.5 0.3 0.8 2.9 4.9 2.0 1.9 5.6 170.4 37.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 231.9 r999i oss1 XmitData: 3.3 0.8 12.0 1.8 1.9 0.0 29.7 0.0 1.3 0.5 1.7 1.1 0.9 4.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

r42i2 r50i2 r58i2 r18i2 r26i2 r130i2 r138i2 r146i2 r154i2 r2i2 r10i2 mds oss1 oss1 oss5 oss5 oss8 oss8 hwsw2 r999i oss2 mds tot r999i oss2 RcvData: 7.3 0.5 0.3 0.7 2.8 2.0 115.3 1.8 0.2 0.0 185.1 0.0 7.6 46.3 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.3 r999i oss2 XmitData: 0.0 1.8 1.3 0.5 0.7 0.9 1.8 1.7 2.2 0.9 0.2 1.3 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 13.6

2 1.9 8.8 1.7 11.1 1.2 3.6 16847.1

Lustre Metadata Caching

- Implemented a methodology to keep metadata cached
 - Identify sections of OST where metadata is stored.
 - Inodes, bitmaps, etc.
 - Open the raw block device and read those blocks every 5 minutes.
 - Read Caching Turned off on OSS
- Helps to limit the impacts of certain types or user behavior.
 - Vast improvement on certain operations.
- Thought we could turn off in 2.4, but returned to this after meltdown.

- Reliable
- Easy to Use
- Performance
- Free

– Reliable

- Some things are surprisingly reliable

-Suspend/Iflush/reboot

-LBUG in OSS doesn't kill everyone

-Limited evictions

-Recovery Works (sometimes)

Some things not

-Cascasding failures

-LBUG or KDB across all servers

-1000's of client evictions

-*Always* hit already patched bugs

- Easy to Use
 - Generally Very easy to use (POSIX compliant)
 - Maybe a few odd end cases
 - -E.g. partial read or write

- Performance

- Can get very good performance
- Things you need to do to get performance doesn't always map easily to many applications.

-ECCO

Large system

-I/Os look random once they get to the back end

– Free

- Yes In the Stallman sense.
- Still require high levels of support
 Bug tracking/patching steep curve here

Issues

- Intel kept two maintenance releases 2.4 and 2.5, then dropped 2.4
- Got on 2.4 early, and then had problems moving to 2.5
- Hit many bugs that were already patched
- Bug tracking jira and Bug patching gerrit system need to talk. Missed some updated patch sets, resulted in more crashes.

Issues

– Resiliance

- Cascading failures.
- Rebooting all 110 lustre servers
- Commit on Share (help recovery?)
- Quiesce Filesystem for administrative work/upgrades
- Performance
 - Single user can drag down performance
 - Network Request Scheduler (LU-398) is on out list to test
- Single client performance

Issues

- Quotas seldom work. Moving to the OSTs made them more fragile

- We seem to always hit bugs that are already patched.
 - Over and over again. Since the beginning of time.

What Does NASA Want from Lustre

- Increased Stability
 - Better Patch Management
- Better Workload Performance (500+ jobs).
- QoS Limiting Damage of Creative Users
- Administrative Shutdown