

DDN's Vision for the Future of Lustre

LUG2015 Robert Triendl

- **1. The Changing Markets for Lustre**
- 2. A Vision for Lustre that isn't Exascale
- 3. Building Lustre for the Future
- 4. Peak vs. Operational Performance
- **5. Application Optimized Lustre**
- 6. Why Conventional Storage Still Matters

Lustre Markets Today

Market Diversification

Lustre Futures Beyond Exascale

Manufacturing	CIFS/NFS Export, AD Integration, RAS Features, Snapshots, Data Management, etc.			
Genomics	Random Performance, Small File & Metadata Performance, Data Management, Security, etc			
General Academic	Broad Application Support, Connectors, User Monitoring, User Access to Snapshot, etc.			
Cloud	Virtualization, Snapshots, Small File Read Performance, Data Distribution, etc.			
Archive	Data Management Features, SMR Drive Use, Data Scrubs, Data Distribution, etc.			

Market Evolution

Market Segments

Disks: Throughput vs. IOPS

10

IOPS/10 GB/sec

11 Lustre Development at DDN

- Lustre Usability Features
- Build-in Reliability and Availability
- Lustre Recovery
- Features for a Broader Market
- Performance for Broad Set of Applications
- Application-optimized Lustre

12 Lustre Code Contributions

ddn.com

13

DDN ExaScaler Software Stack

	DDN	DDN & In	tel	Intel HPDD		Other			
Data		ant Data Conv	Таре		S3 Cloud		Object (WOS)		
Managem	ent 📕	Fast Data Copy	ExaScaler Data Management F				ramework		
Monitoring		DDN DirectMon DDN			ExaScaler Monitor		Intel IML		
& Manage	ment								
Core FS		DDN Clients	NFS/CIFS/S3		D	DN IME	Intel Hadoop		
		DDN Lustre Edition							
		ldiskfs			0.000750		h tufa		
		Intel DSS			OpenZFS		btrfs		
Storage H	W	DDN BI	Other HW						

Why BtrFS?

- Standard Local Filesystem in RHEL7
- Better Throughput Performance than ZFS
- Similar Feature Set, but all Linux
- No Possible Patent Infringement
- Simple Integration and Deployment

Application-Optimized Lustre

- Lustre for Specific Applications
- Workload Profiling
- Optimization Across I/O Calls
- Optimizing Application Runtime
- Working with Customers

Genome Pipeline Benchmarks

Lustre 2.5 Client Performance

Samtools 20% faster with DDN Lustre optimizations

17 SSD Pools and Caching

- DSS to Link File Layer to Block Layer
- Build into the File System
- Better use of SSDs for I/O Optimization
- Increased Small File Performance
- Increased Random Read to Large Files
- Additional specificity with fadvice()

18 ExaScaler Monitoring

- Filesystem, OSS, MDS, OST, MDT, etc.
- JOB ID, UID/GID, application stats, etc.
- Archive of data by policy

- Lightweight
- Near real-time
- Massive scale

19

TITECH Examples

64 Billion of Lustre Stats in 15 days!

20

Why Block-Level Raid?

- Best Mixed I/O Performance
- Consistent Performance
- Hardware-optimized Performance
- Best Performance During Failure
- Integrated Storage Services

21 SFA RAID Stack Performance

- Above 1 Million 4K IOPS per 8 CPU Cores
- Above 10 GB/sec per 8 CPU Cores
- 8 Cores Sufficient for PCI Infrastructure
- More Cores for File System Services
- Additional Cores for More Functionality

SFA Random Read

MB/sec

23

Flexible SSU Design

STORAGE

SFA14K Performance SSU

25

"Wolfcreek" Hardware

26

"Wolfcreek" Hardware

