DDN’s Vision for the Future of Lustre

LUG2015
Robert Triendl
Topics

1. The Changing Markets for Lustre
2. A Vision for Lustre that isn’t Exascale
3. Building Lustre for the Future
4. Peak vs. Operational Performance
5. Application Optimized Lustre
6. Why Conventional Storage Still Matters
Hyperscale Storage Markets

HPC
- Scratch
- Petabytes
- Streaming Write
- Large Files
- Infiniband
- Single Location

Cloud
- WORM(N)
- Billions of Files
- Random Read
- Small Files
- Ethernet
- Distributed

Big Data & Data Analytics
Lustre Markets Today

- Data: 33%
- Work: 31%
- Mixed: 22%
- Cloud: 2%
- Archive: 12%
Market Diversification

- Work
- Data
- Mixed Use
- Archive

- Weather Climate
- HPC Work
- CAE Chemical
- Genomics
- Big Data Science
- Energy
- Security
- General Academic
- Finance
- HPC Cloud
- Tier 2
- Cloud

ddn.com
Lustre Futures Beyond Exascale

<table>
<thead>
<tr>
<th>Category</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>CIFS/NFS Export, AD Integration, RAS Features, Snapshots, Data Management, etc.</td>
</tr>
<tr>
<td>Genomics</td>
<td>Random Performance, Small File & Metadata Performance, Data Management, Security, etc.</td>
</tr>
<tr>
<td>General</td>
<td>Broad Application Support, Connectors, User Monitoring, User Access to Snapshot, etc.</td>
</tr>
<tr>
<td>Cloud</td>
<td>Virtualization, Snapshots, Small File Read Performance, Data Distribution, etc.</td>
</tr>
<tr>
<td>Archive</td>
<td>Data Management Features, SMR Drive Use, Data Scrubs, Data Distribution, etc.</td>
</tr>
</tbody>
</table>
Market Evolution

- 2012:
 - Archive: 20%
 - Cloud: 10%
 - Mixed: 30%
 - Data: 40%
 - Work: 80%

- 2013:
 - Archive: 20%
 - Cloud: 10%
 - Mixed: 30%
 - Data: 40%
 - Work: 80%

- 2014:
 - Archive: 20%
 - Cloud: 10%
 - Mixed: 30%
 - Data: 40%
 - Work: 80%
Market Segments

<table>
<thead>
<tr>
<th>Year</th>
<th>Industry</th>
<th>Government</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td></td>
<td>0%</td>
<td>60%</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td>10%</td>
<td>50%</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td>20%</td>
<td>40%</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td>30%</td>
<td>30%</td>
</tr>
</tbody>
</table>
Disks: Throughput vs. IOPS

- Lustre 1.8
- Lustre 2.4
- ExaScaler 2.2
- Lustre with Btrfs
- Next Gen SAS Drives

![Chart showing throughput vs. IOPS for different storage systems.](chart.png)
Lustre Development at DDN

▶ Lustre Usability Features
▶ Build-in Reliability and Availability
▶ Lustre Recovery
▶ Features for a Broader Market
▶ Performance for Broad Set of Applications
▶ Application-optimized Lustre
Why Btrfs?

- Standard Local Filesystem in RHEL7
- Better Throughput Performance than ZFS
- Similar Feature Set, but all Linux
- No Possible Patent Infringement
- Simple Integration and Deployment
Application-Optimized Lustre

- Lustre for Specific Applications
- Workload Profiling
- Optimization Across I/O Calls
- Optimizing Application Runtime
- Working with Customers
Genome Pipeline Benchmarks

Samtools 20% faster with DDN Lustre optimizations

Lustre 2.5 Client Performance

Human Genetics samtools workflow

Runtime (Hours)

<table>
<thead>
<tr>
<th>Version</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.1</td>
<td>40</td>
</tr>
<tr>
<td>DDN Branch</td>
<td>30</td>
</tr>
</tbody>
</table>
SSD Pools and Caching

- DSS to Link File Layer to Block Layer
- Build into the File System
- Better use of SSDs for I/O Optimization
- Increased Small File Performance
- Increased Random Read to Large Files
- Additional specificity with `fadvise()`
ExaScaler Monitoring

- Filesystem, OSS, MDS, OST, MDT, etc.
- JOB ID, UID/GID, application stats, etc.
- Archive of data by policy

- Lightweight
- Near real-time
- Massive scale

Burst Buffer

OSS, MDS Storage

Monitoring Server
- collectd
- Graphite plugin
- graphite

UDP(TCP)/IP based small text message transfer
64 Billion of Lustre Stats in 15 days!
Why Block-Level Raid?

- Best Mixed I/O Performance
- Consistent Performance
- Hardware-optimized Performance
- Best Performance During Failure
- Integrated Storage Services
SFA RAID Stack Performance

- Above 1 Million 4K IOPS per 8 CPU Cores
- Above 10 GB/sec per 8 CPU Cores
- 8 Cores Sufficient for PCI Infrastructure
- More Cores for File System Services
- Additional Cores for More Functionality
SFA Random Read

MB/sec

512K I/O Size
1M I/O Size
2M I/O Size
4M I/O Size

DDN STORAGE
ddn.com
Flexible SSU Design
SFA14K Performance SSU

- Up to 45 GB/sec
- Up to 2950 TB
- External MDT

- 4-6 OSS
- OST Storage

- Monitoring
- 2-4 MDS
- MDT Storage
“Wolfcreek” Hardware
“Wolfcreek” Hardware