
1

Using UID Mapping in Lustre 2.7
and

GSS Shared Key Update

Stephen Simms, Jeremy Filizetti, Chris Hanna,
Nathan Lavender, Kit Westneat

High Performance File Systems
Indiana University

Lustre User Group
Denver

April 13, 2015

2

UID Mapping

• IU’s Software Development Contract with OpenSFS

– IU developed UID Mapping solution now called
“nodemap”

• Coordinates client access across administrative
domains

• Allows workflows involving geographically distributed
resources

• Enables easy data sharing to facilitate collaboration
• Misnomer to think of this as “WAN” code

– This portion of the talk will detail the basics of using the
nodemap feature in its current state

3

What does Preview Mean?

• The core nodemap features are in 2.7
– Administrative tools are coming soon

• Currently
• Nodemap commands need to be run on both MDS and OSS

nodes and configurations do not persist between module reloads
– Scripts can be used to redeploy nodemap configuration
– Map synchronization will be in 2.8

• Maps can only be listed through /proc
– an lctl command will be in 2.8

• We would like your help to test this feature in the wild and share your
thoughts and experiences

4

Why Map?

Lustre
MDS/OSS

A mature Lustre system may have UID and GID sets that conflict with
another system being integrated. Nodemap enables that system to
be seamlessly mounted to the existing Lustre installation.

Existing
Computing
Resource

Existing
Computing
Resource

Existing
Computing
Resource

Existing production UID set (UIDs 500-10000)

New Resource to
Integrate
(UID 500-1000)

Nodemap transparently
replaces this range with
UID 20500-21000

5

Nodemap Elements

Nodemap is deployed on the MDS and OSS nodes and is invisible to
clients. Key elements include:

• NIDs, to which a unique mapping is defined
• Policy groups, which consist of one or more sets of NIDs
• Two properties, “trust” and “admin”, which can optionally be applied

to a policy group
• A collection of identity maps or idmaps which determine the

translation table for a policy group

6

Configuring Nodemap

• Before activating the nodemap feature, create a policy
group for your Lustre servers

#lctl nodemap_add LustreServers

• Add the NID numbers (or range) of your servers
– 1 MDS, 2OSS, 1 Management Client

#lctl nodemap_add_range -–name LustreServers -
-range 192.168.4.[1-4]@tcp

7

Configuring Nodemap (cont’d)

• Set properties for Lustre servers
– admin = exempt from root squash (on by default)

#lctl nodemap_modify -–name LustreServers -–property
admin –-value 1

– trusted = used for a policy group that is unmapped

#lctl nodemap_modify -–name LustreServers -–property
trusted –-value 1

8

Basic Mapping

To span administrative domains, a nodemap idmap translates client UID / GIDs to
canonical UID / GIDs to prevent namespace collision.

avis
UID 501

lagus
UID 1512

piscis
UID 3793

Lustre
Clients
At
GenomeChi
192.168.0.30

Lustre
MDS/OSS

avis
UID 21150

lagus
UID 21151

piscis
UID 21152

9

Basic Mapping Commands

• Create a policy group for machine GenomeChi
lctl nodemap_add GenomeChi

• Add GenomeChi’s NID to the policy group
lctl nodemap_add_range -–name GenomeChi --range 192.168.0.30@tcp

• Populate GenomeChi’s idmap with the three users to be mapped nothing
that not all users of GenomeChi need to be mapped, only those who will be
using the Lustre file system.

lctl nodemap_add_idmap -–name GenomeChi --idtype uid --idmap 501:21150

lctl nodemap_add_idmap -–name GenomeChi --idtype uid --idmap 1512:21151

lctl nodemap_add_idmap –-name GenomeChi --idtype uid –-idmap 3793:21152

10

Listing Maps in 2.7

• To examine the contents of the GenomeChi idmap

cat /proc/fs/lustre/nodemap/GenomeChi/idmap

[

{ idtype: uid, client_id: 501, fs_id: 21150 },

{ idtype: uid, client_id: 1512, fs_id: 21151 },

{ idtype: uid, client_id: 3793, fs_id: 21152 }

]

cat /proc/fs/lustre/nodemap/GenomeChi/ranges

[

{ id: 1, start_nid: 192.168.0.30@tcp, end_nid:
192.168.0.30@tcp }

]

11

Example: Mapping Two Identities to One
Two user identities can be mapped to a single identity. The below example
shows Mr. Bird using his accounts on two different systems to access a single Lustre
filesystem.

Lustre
Clients
At
GenomeChi
192.168.0.30

Lustre
Clients
At
GenomeDet
11.22.33.44

avis
UID 501

dovegeno
UID 8433

Lustre
MDS/OSS

UID 21150

12

Two to One Mapping Commands

• Create a second policy group called GenomeDet
lctl nodemap_add GenomeDet

• Add a NID for GenomeDet
lctl nodemap_add_range -–name GenomeDet -–range
11.22.33.44@tcp

• Add an idmap for the user
lctl nodemap_add_idmap -–name GenomeDet --idtype uid –-
idmap 8433:21150

This map is kept independently of the map for GenomeChi

13

GSS Shared Key Security

• IU developing Shared Key Security solution using GSS
– Think of GSS as a vacuum cleaner

• Kerberos is an attachment
• Shared key would be another GSS attachment

– Shared key as an alternative to kerberos
• File System admins shouldn’t have to run a KDC
• Kerberos shops adding new service can be difficult
• Politics can affect kerberos cross-realm

14

Shared Key Mechanism and Flavors

• Two modes of operations supported

– Shared Key Integrity (ski)
• Shared key for HMACs for assurance of message

integrity

– Shared Key Privacy (skpi)
• Uses Two keys
• Shared key for HMACs (integrity)
• Generated session key using Diffie-Hellman (privacy)
• Provides Perfect Forward Secrecy

15

GSS

• Security context initialization through userspace upcalls

• Client Side
– Uses /usr/sbin/lgss_keyring
– Called from the kernel key ring request_key binary
– Requires setting up a file in /etc/request.d named after the key_type's

name (lgssc)

cat /etc/request-key.d/lgssc.conf
create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S

16

GSS (cont’d)

• Server Side
– Uses /usr/sbin/lsvcgssd
– Reads and writes to a proc file
– Must be running or SEC_CTX_INIT RPCs will be missed

• Basic Flow
– Requests received
– Unpacked in sptlrpc_svc_unwrap_request
– Instantiated through upcalls in sunrpc caching layer
– Upcall handles mechanism specific initialization

17

Current GSS Work

lgss_keyring and lsvcgssd code
Restructuring some existing code

Upcall passes the mechanism type
Determines which service handler to call

lgss_keyring work complete
lsvcgssd work nearing completion and untested

Loading Keys
Uses a mount.lustre command option

File on Client
Directory on servers (multiple keys/clusters)
Parses and adds keys to kernel keyring

mount command is next on the agenda

18

Thank you!

Questions?

	Using UID Mapping in Lustre 2.7�and�GSS Shared Key Update
	UID Mapping
	What does Preview Mean?
	Why Map?
	Nodemap Elements
	Configuring Nodemap
	Configuring Nodemap (cont’d)
	Basic Mapping
	Basic Mapping Commands
	Listing Maps in 2.7
	Example: Mapping Two Identities to One
	Two to One Mapping Commands
	GSS Shared Key Security
	Shared Key Mechanism and Flavors
	GSS
	GSS (cont’d)
	Current GSS Work
	Thank you!

