
Practices on Lustre File-level RAID

Qi Chen

chenqi.jn@gmail.com
Jiangnan Institute of Computing Technology

mailto:chenqi.jn@gmail.com

Agenda

• Background
– motivations

– practices on client-driven file-level RAID

• Server-driven file-level RAID
– fundamentals and key ideas

– overview of the architecture

– advantages and limitations

• Current state of development

• Future work

Motivations

• Two challenges of distributed file system
– as system scales, node failure is becoming more

frequent
– as disk capacity increase, Hardware RAID is becoming

more expensive

• Solutions
– high availability

• heartbeat/zookeeper
• failover

– high reliability
• hardware RAID
• replication: CephFS/GlusterFS/HDFS
• Software RAID/erase code: GlusterFS

Lustre storage system HA

• Much effort on high availability

– req replay mechanism to handle recovery

– build-in failover mechanism to reconnect to standby
servers

• But not so much on high reliability

– disk array hardware RAID to avoid data loss after disk fails.

– external disk array + mirror channel

• Unable to tackle
– Disk array failure

• The controller failure

• disk array is unable to be rebuilt

– Internal disk array

– No RAID controller Cards

Lustre high reliability design

• HSM

– backup data to other storage systems

• DAOS snap and clone

– do napshot and clone container

• Client-driven file-level RAID

– SNS(Server Network Striping)

– File level replication

Practices on SNS in lustre-2.4(RAID1)

• Key ideas
– add raid1 ops in struct lov_layout_operations
– implement RAID1 object operations in every layer of CLIO

• Problems
– page management across multiple layers

• VFS page/cl_page/cache

– Lock management
• cl_lock stat transfer
• LDLM lock handle

– Layout transfer
– Some reverse operations from bottom to up

• cl_io_for_each_reverse(scan, io)
• CL_PAGE_INVOKE()
• osc_io_submit()->cl_page_prep()->cl_page_invoke()-

>vvp_page_prep_read()

Lessons learned from our early practice

• The logic is too complex to keep the code stable
– should handle cl_{io, lock, page, req}
– should handle LDLM lock
– should consider about VFS semantics

• Page management is difficult and page cache
policy is limited
– Pages are allocated in VFS but operated in CLIO
– should fit into OSC page cache policy

• The RAID op error is difficult to be detected
– async IO
– page merge in osc request

Agenda

• Background
– motivations

– practices on client-driven file-level RAID

• Server-driven file-level RAID
– fundamentals and key ideas

– overview of the architecture

– advantages and limitations

• Current state of development

• Future work

Fundamentals and key ideas

• Fundamentals
– simple data process logic

– implemented as a separated and optional module

– develop a rapid basic prototype of file-level RAID1

– more software RAID algorithms to support

– more features to explore

• Key ideas
– Handle RAID object request on OST servers

– Leverage the current Lustre HA architecture

Overview of our server-driven file-level RAID architecture

OST server

RAID
OBDldiskfs

OST server

RAID
OBDldiskfs

OST server

RAID
OBDldiskfs

OST server

RAID
OBDldiskfs

CLIENT CLIENTCLIENTCLIENT CLIENT

failover failover

ldiskfsldiskfs

OST server

Server-driven file-level RAID stack

Replica FRAME
read/write/punch/setattr/sync/getattr

page magagement
Lock Value Block operations

osd-disk osd-raid osd-raid osd-raid

OST SERVICE
Handle Normal Req From Client

ldlm management

RAID FRAME
read/write/punch/setattr/sync/getattr

Page management
LockValue Block operations

RAID algorithm

osd-disk osd-raid osd-raid osd-raid

RAID SERVICE
Handle RAID Req From OST

ldlm management

Server-driven file-level raid vs. client-driven file-level RAID

• Advantages

– LDLM lock operations

– page management in replica/RAID FRAME

– Distributed transactions

– other features to explore

• Limitations

Avoid complicated ldlm lock operations

• Client-driven file-level RAID
– Different lock type

• extent lock
• glimpse lock
• lockless

– Complicated lock operations
• cl_lock ops
• Lockless ops
• Ldlm lock callback
• Lock merge

• Server-driven file-level RAID
– Ldlm lock is handled by OST service
– Replica FRAME just need to support LVB operations

OST SERVICE

Replica FRAME

ost_lvb

ldlm_valblock_ops

osd_{ldiskfs, raid}

attr_get

lock req lock ret

More simple and intelligent page management

• Page management on client
– should keep VFS semantics

• page status

• VFS lock on page

• file cache in VFS

– should handle cl_page at every
layer
• {ccc, lov}_page and page ops

• {lovsub, osc}_page and page ops

– should handle lock with page

– page can be cached at OSC

• Client-driven file-level RAID
– difficult to handle page status on

shared page

– difficult to map the page status to
shadow page

– difficult to support async RAID
operations

PAGE

radix tree
of pages

cl_pagecl_page cl_page

OSC

radix tree
of pages

cl_pagecl_page cl_page

OSC

VFS

PAGE

radix tree
of pages

cl_pagecl_page cl_page

OSC

radix tree
of pages

cl_pagecl_page cl_page

OSC

VFS

PAGE

CLIO

map

client-driven file-level RAID1 without shadow page
alloc

client-driven file-level RAID1 with shadow page alloc

More simple and intelligent page management

• Server-driven file-level RAID

– pages are used by
OST/RAID servcie, no need
to keep VFS semantics

– can easily build mapping
among different pages

– no need to consider LDLM
lock

– be able to implement async
RAID operations

– Be able to add some
customized page cache
policies

osd-ldiskfs

page

osd-raid

page

osd-raid

page

osd-raid

page

Replica FRAME

page

page management IN Replica FRAME

page management in RAID FRAME

OST SERVICE

osd-ldiskfs

Raid
page

osd-raid

page

osd-raid

page

osd-raid

page

RAID FRAME

page

RAID SERVICE

Potential to support distributed transaction

• Problem Statement
– When operation is related to more

than one sub-operations on RAID
objects (ex. RAID6), we ensure that
either both operations succeed or
both fail.

osd-ldiskfs

page

osd-raid

page

osd-raid

page

Replica/RAID FRAME

page

• Client-driven file-level RAID
– no persistent storage

– difficult to support distributed transaction

• Server-driven file-level RAID
– have persistent storage

– leverage transaction mechanism in object storage device
API

Other features

• Less code added/modified on Lustre client

– keep the stability of client code

– old client can also connect to RAID servers

• RAID algorithm is running on OST server

– do not consume extra resource (memory,
network, CPU) on client

– take advantages of large memory, high-
throughout network and powerful CPU on OST to
improve performance

Limitations

• Network congestion
– When client and OST on the same node, RAID object ops

will race with normal client ops

• To much connections between OSS servers
– each OSS should connect to the others

• Difficult to improve read performance using raid object
– local disk read is faster than remote network read

• May get poor performance on other RAID algorithm (ex.
RAID5) ???
– Doubble data transfer in network
– RAID object will be updated many times
– Performance is as good as it in RAID1

Agenda

• Background
– motivations

– practices on client-driven file-level RAID

• Server-driven file-level RAID
– fundamentals and key ideas

– overview of the architecture

– advantages and limitations

• Current state of development

• Future work

Current state of development

• Development is based on lustre-2.5.2
• Now just focus on file-level RAID1
• The work has been completed

– file layout support RAID1
– lfs {set, get}stripe on RAID1 file
– RAID1 object create and destroy
– RAID obd build-up
– page management in raid obd
– RAID1 object read/write
– RAID1 object punch/setattr
– RAID1 lvb ops
– LDLM lock operations

• {Glimpes, extent} lock on RAID1 object
• ost_blocking_ast on RAID1 object

– File layout lock callback
– Record stripe status(bad, lost) in RAID1 file

layout(struct lov_mds_md)

ost

OFD obd

osd-ldiskfs

RAID obd

OSC

Now, the system can run
smoothly on only raid obd!!!

Future work

• Bad RAID1 file repair and recovery
• Combine with Lustre failover

mechanism
• Support quota in RAID1 file
• Reconstruct raid-frame based on osd

API
– use DT API to implement osd-raid

device
– extend the functions of OSP device

• add struct dt_body_operations:do_attr_get
• add struct dt_object_operations method

– use OUT to handle RAID object ops

• Explore other RAID algorithms

OST

OFD obd

osd-ldiskfs

RAID obd

OSC

OST

OFD

osd
ldiskfs

osd
raid

osd
raid

OUT

Q & A

