Lustre File System Acceleration Using
Server or Storage-Side Caching: Basic
Approaches and Application Use

Cases

Presented by James Coomer

April, 2014 Senior Technical Advisor

Overview

e The problem: Much interest in broadening

applicability of Parallel file systems to cope
with small files and small 10

 Small files gives rise to issues in platter usage

efficiency, metadata performance and small io
performance

e Read cacheing is one aspect but needs added
intelligence to preload data

New: Lustre fadvise() framework

A simple enhancement of Lustre to enable the use higher levels of global cache
for reads via fadvise()

Integrated with Lustre stack
— Transparently handle file stripe of Lustre
— Give hints through the I/0 path to keep efficient

Utility and APl is simple to use
— “Ifs fadvise” command to give advice on Lustre files
— ioctl(LL_IOC_FADVISE) for advices from smart applications

Enable users to give priority hints to SFX hardware from Lustre clients efficiently

Extensible functionality..
— Memory based cache on OST side for performance boost
— In-band priority hints for SFX
— More types of advice could be implemented based on a common framework

Possible to be merged in mainline of Lustre codes except SFX codes

System Architect
Ifs fadvise ioctl API Lustre Client II:|liJn_t|§,:ADVISE_NONE
(enhancement of "Ifs" comand) LOS LU_FADVISE_CACHE

LU_FADVISE_LOW
LU_FADVISE_MED

LU_FADVISE_HIGH

o | | osc |

0SS

0SS's 0SS's
IO memory

| LU_FADVISE_CACHE | LU_FADVISE_CACHE

SFA12K/7700

LU_FADVISE_CACHE
LU_FADVISE_LOW
LU_FADVISE_MED
| Lu_FADVISE_HIGH

Benchmark Setup

cient LT

— Client

MDS and 0551

lustre MDS [—
+x2 033

[
O 0552
—

x40 MNL-3AS drives

presented as 205Ts per OS5
X6 SAS drives

presented as single £+2 MDT
x2 Pliant LB206M 550s

Hun gl Hod

Simple Lustre Setup

e Single SFA7700 for OSTs and MDTs
* incorporates 2 SSDs
Benchmark
e mpirun-np 16 IOR -r -t 4k -b 1g -e -k -z -0
[lustre/file
* One or more large files created. Each one of 16
task reads 4k randomly across the file
— -b N blockSize -- contiguous bytes to write per task (e.g.: 8, 4k, 2m, 1g)
— -e fsync-- perform fsync upon POSIX write close
— -k keepFile -- don't remove the test file(s) on program exit
— -r readFile -- read existing file
— -t N transferSize -- size of transfer in bytes (e.g.: 8, 4k, 2m, 1g)
— -z randomOffset -- access is to random, not sequential, offsets within a file
e Use Ifs fadvise and vary argument:
— Ifs fadvise -a high <filename>
— Ifs fadvise <filename>
e C(Clear client caches between runs...

Benchmark Results

Small File Random Read Performance

Small Shared File Read Seoo
e Create a 4G file and randomly read from

many threads on one client using
1. No Acceleration
2. Prefetch data to controller SSDs (SFX)
3. Prefetch data to OSS RAM

W Disk Only

:
|

E5FX

Throughput (ME/s

OES Fakd

:
|

* Non-Accelerated file reads limited by the
spindles on the OST (8+2) 500 :

128 256 512 1024 2048 A0EE

oo
0000
< = -
SSD NL-SAS LUNS £ 10000 = Disk Only
{ By
30000

055 RAM

20000

. 1 11
i B 1B 312 B4 128

IOR Transfer size (kb)

[©00000000a

Benchmark Results

Large Shared File Read

* Create a 128G file and randomly read
from many threads on one client using

1. No Acceleration
2. Prefetch data to controller SSDs (SFX)
3. Prefetch data to OSS RAM

Throughput (MB/s)
E &8 & 8 &

=

Large File Random Read throughput

M Disk Only
ESFR
055 RAM

] -1 16 32 Gd 128 256 512 1024

Transfer Slze (ki)

Large File Random Read IOPs

out of RAM!...back to disk performance

= Disk Qnly
HSFK
055 RAM

4 g 16 3z 128
Transfer Size (kb)

Benc h ma rk Resu ItS Many shared file random read throughput

1400

Many Files Shared Read 1200 L

* Create 16x 8G file with Stripe 1000 & -
Count=1 across all OSTs and
randomly read from many threads on
two clients using

1. No Acceleration

2. Prefetch data to controller SSDs (SFX)
3. Prefetch data to OSS RAM

li i 4] 16 32 B4 128 256 512 1024 2048 4096
Transfer Size [kb)

@ Many shared file random read IOPs

& Disk Only

ESFX

thraughput [MB/s)

055 RAM

s8D0 14000

:

& Disk Only

800D = SFX
£000 055 BAM
4000 —
20 " .
ﬂ -
4 g 16 32 &4 128

Transfer Size (MB/s)

Al

Conclusions

Lustre FADVISE() is another useful performance enhancement for small IO reads and
can help larger 10 too depending on the storage system specifications

Can be use for smaller datasets to take advantage of the OSS RAM

larger datasets can use an SSD layer such as with SFX

Integration with common schedulers possible

testing integration into real world environments underway — assistance welcome

	Lustre File System Acceleration Using Server or Storage-Side Caching: Basic Approaches and Application Use Cases
	Overview
	New: Lustre fadvise() framework
	System Architecture
	Benchmark Setup
	Benchmark Results
	Slide Number 7
	Slide Number 8
	Conclusions

