
Lustre File System Acceleration Using
Server or Storage-Side Caching: Basic
Approaches and Application Use
Cases

Presented by James Coomer
Senior Technical AdvisorApril, 2014

Overview

• The problem: Much interest in broadening
applicability of Parallel file systems to cope
with small files and small IO

• Small files gives rise to issues in platter usage
efficiency, metadata performance and small io
performance

• Read cacheing is one aspect but needs added
intelligence to preload data

New: Lustre fadvise() framework
• A simple enhancement of Lustre to enable the use higher levels of global cache

for reads via fadvise()
• Integrated with Lustre stack

– Transparently handle file stripe of Lustre
– Give hints through the I/O path to keep efficient

• Utility and API is simple to use
– “lfs fadvise” command to give advice on Lustre files
– ioctl(LL_IOC_FADVISE) for advices from smart applications

• Enable users to give priority hints to SFX hardware from Lustre clients efficiently
• Extensible functionality..

– Memory based cache on OST side for performance boost
– In-band priority hints for SFX
– More types of advice could be implemented based on a common framework

• Possible to be merged in mainline of Lustre codes except SFX codes

3

OSC

OSD

SFX hints

System Architecture
lfs fadvise

(enhancement of "lfs" comand)
ioctl API

LOV

Stripe to objects

Give advice

OSC

Lustre Client

OSS

User space
Kernel space

OSS's
memory

SFA12K/7700

OSD

OSS

OSS's
memory

Hints:
LU_FADVISE_NONE
LU_FADVISE_CACHE
LU_FADVISE_LOW
LU_FADVISE_MED
LU_FADVISE_HIGH

LU_FADVISE_CACHE
LU_FADVISE_LOW
LU_FADVISE_MED
LU_FADVISE_HIGH

LU_FADVISE_CACHELU_FADVISE_CACHE

Disk

SFX

Disk

SFX

4

Benchmark Setup
Simple Lustre Setup
• Single SFA7700 for OSTs and MDTs
• incorporates 2 SSDs
Benchmark
• mpirun -np 16 IOR -r -t 4k -b 1g -e -k -z -o

/lustre/file
• One or more large files created. Each one of 16

task reads 4k randomly across the file
– -b N blockSize -- contiguous bytes to write per task (e.g.: 8, 4k, 2m, 1g)
– -e fsync -- perform fsync upon POSIX write close
– -k keepFile -- don't remove the test file(s) on program exit
– -r readFile -- read existing file
– -t N transferSize -- size of transfer in bytes (e.g.: 8, 4k, 2m, 1g)
– -z randomOffset -- access is to random, not sequential, offsets within a file

• Use lfs fadvise and vary argument:
– lfs fadvise -a high <filename>
– lfs fadvise <filename>

• Clear client caches between runs...

Benchmark Results

Small Shared File Read
• Create a 4G file and randomly read from

many threads on one client using
1. No Acceleration
2. Prefetch data to controller SSDs (SFX)
3. Prefetch data to OSS RAM

• Non-Accelerated file reads limited by the
spindles on the OST (8+2)

Only 2 SSDs... Spinning disk catches up
for larger IOs

very large small IO improvement for
small (4G) files

Large Shared File Read
• Create a 128G file and randomly read

from many threads on one client using
1. No Acceleration
2. Prefetch data to controller SSDs (SFX)
3. Prefetch data to OSS RAM

out of RAM!...back to disk performance

Benchmark Results

Many Files Shared Read
• Create 16x 8G file with Stripe

Count=1 across all OSTs and
randomly read from many threads on
two clients using

1. No Acceleration
2. Prefetch data to controller SSDs (SFX)
3. Prefetch data to OSS RAM

Benchmark Results

Conclusions

1. Lustre FADVISE() is another useful performance enhancement for small IO reads and
can help larger IO too depending on the storage system specifications

2. Can be use for smaller datasets to take advantage of the OSS RAM
3. larger datasets can use an SSD layer such as with SFX
4. Integration with common schedulers possible
5. testing integration into real world environments underway – assistance welcome

	Lustre File System Acceleration Using Server or Storage-Side Caching: Basic Approaches and Application Use Cases
	Overview
	New: Lustre fadvise() framework
	System Architecture
	Benchmark Setup
	Benchmark Results
	Slide Number 7
	Slide Number 8
	Conclusions

