
Collective I/O for Exascale I/O Intensive
Applications

Sai B. Narasimhamurthy
Lead Researcher

Goal of the work
Exascale10: A Quick Background
DEEP-ER Project: A Short background
Exascale I/O Intensive applications: Key Requirements
The small I/O problem
Existing Collective I/O techniques & drawbacks
Solution framework
Current Status and Next Steps

Agenda

2

Developing a ubiquitous software middleware based solution to
address key performance optimization issues for I/O intensive
Extreme scale out applications

Small I/O is seen is a major problem for I/O even at Petascale

Trying to address the small I/O problem through the newly
architected E10 middleware

The solution should be applicable to a wide variety of
applications and back-end object stores and file systems, etc

Solution part of the DEEP-ER EU project and is targeted to be
an E10 component

Goal of the work

Exascale10 a quick background
Develop a ubiquitous middleware that helps I/O scaling

Works for a wide variety of applications
Agnostic of any backend storage/file systems

Based on requirements captured in 2012/13 from application
experts worldwide

Participation from more than 40 organisations worldwide
(Big Labs, Academics and Industry experts)

E10 now part-funded in DEEP-ER and Mont-Blanc2 EU
projects

Exascale10 a quick background..
File Systems cannot scale “as is” (examples)

File system interfaces too low level for apps to efficient make
use of them (for providing hints, optimizations, layouts, etc)

Overlapping stripe writes and small I/Os from clients cannot
scale , performance wise
Intelligent Middleware could detect such scenarios

Performance overheads due to locks and synchronisation
cannot scale

Specialised read ahead techniques (For Ex: Speculative read
ahead) not possible

Various formats such as HDF5/NetCDF have their own
semantics which is repeated in file systems

Exascale10 a quick background..
Each layer has its own semantics:

Re-implementation of the same optimization strategies
Layer specific approaches drastically degrade performance, prevent
scalability

HPC Application
(eg: Climate Simulation Codes)

High-Level I/O Library/Data Formats
(eg. HDF5, NetCDF4, Grib2)

Classic I/O Middleware
(eg. MPI-IO)

I/O Forwarding
(eg. ZOID)

Parallel File System
(eg. Lustre, GPFS)

Includes communications infrastructure such as
LNET connecting clients/servers

Local File System
(eg. EXT4)

(a) Mapping application data abstractions(Eg. Matrices,
Vectors, etc) to storage abstractions(objects, files)

(b) Portability of data across platforms

(a) Co-ordinates file accesses between multiple
processes

(b) Enables parallel I/O from processes to files

(a) Perform I/O on behalf of compute nodes
(b) Optimizations (aggregation, caching, rescheduling,

etc)

(a) Organises files and objects in many nodes
(b) Parallelize data access

Maps a file/object in bytes and blocks on storage
hardware

EIOW Middleware
“realm”

Substrate

Exascale10 a quick background..

DEEP-ER EU project, a short background
Extension of the “DEEP” FP7 programme funded EU project

addressing Exascale Compute
Separately addressing highly scalable code parts in Exascale

applications(envisioned in DEEP)

Highly scalable, efficient and easy to use Parallel I/O for Exascale
Exploration of NVRAM technologies at various levels in the I/O

stack

Low-over head user-level checkpoint/restart and task recovery for
Exascale apps

Co-design approach with applications

DEEP-ER project, a short background

DEEP-ER project, a short background

Summary of key I/O requirements from the DEEP-ER
(Exascale targeted) Applications

I/O intensive modes

Need to address large shared files

I/O issues need to be addressed for both checkpoint restart as
well as simulation based file I/O

Optimizations to address small I/O on large shared files
absolutely essential

Collective I/O at Exascale needs to be a key optimization!

Exascale I/O Intensive apps: Key Requirements

The Small I/O Problem

Congested I/O Servers
Reduced Disk I/O Bandwidth

Existing Collective I/O (2 Phase I/O)

24.02.2014

0

0 1 2 3

I/O Servers

1 2

Phase 1
Data Shuffling

Phase 2
Data I/O

Aggregated
View

Processes

Aggregator Process 0 Aggregator Process 2

Better performance than small contiguous I/O

2-Phase I/O Limitations

Aggr

P0 P1 P2 P3

Synchronisation issues

Bottleneck process

Aggregator Bottlenecked

Aggregator 0

Aggregator 1

Aggregator 2

Aggregated
File Region

Stripe
boundaries

Partitioning 1

Stripe collision

Partitioning 2

Partitioning 3

Data layout issues
(lack of physical layout
awareness among
aggregators)

Stripe contention

I/O server contention

Collective I/O - Limitations

Aggregator operations consume memory resources

Neither the memory bandwidth nor the memory capacity will
scale by the same factor as the total concurrency(the scale of the
number of nodes)![Vetter2008]

HPC system
requirements[ross2013]

ExCol - Solution Framework

Collective I/O enhancements for Exascale
Primarily addressing the small I/O problem as discussed earlier
..but at massive I/O scale-outs

Implementation will be built around existing collective I/O implementations
(in ROMIO) as a base

No reinventing the wheel
Preserving MPI-IO interoperability semantics for applications

APIs will be part of Exascale10 Middleware

ExCol- Solution framework

Avoiding data exchanges between aggregators and processes

Conserving memory bandwidth

Avoiding very large aggregator buffers

Physical layout awareness

Leveraging the concept of advanced file views for aggregators

Optimizations to deal with NVRAM layers between compute and storage
(as we have in the DEEP-ER architecture)

ExCol Methods - Example

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

P0 P1 P2 P3

0 4 8 1
2 1 5 9 1

3 2 6 1
0

1
4 3 7 1

1
1
5

Logical
Layout /
File View

Data I/O
Phase

IOS
0

IOS
1

IOS
2

IOS
3

stripe

Data Shuffle
Phase

Memory
Layout

P0 P1 P2 P3

0 4 8 1
2 1 5 9 1

3 2 6 1
0

1
4 3 7 1

1
1
5

IOS
0

IOS
1

IOS
2

IOS
3

Example of Physical layout awareness (and usage of listIO type frameworks)

Classic Extended Two Phase I/O Partitioning Physical layout aware partitioning, stripe
contiguous (no data shuffle)

0 4 8 1
2 1 5 9 1

3 2 6 1
0

1
4 3 7 1

1
1
5

0 4 8 1
2 1 5 9 1

3 2 6 1
0

1
4 3 7 1

1
1
5

Physical
Layout

Memory

File

Contiguous in Memory

Non-Contiguous in File

18

Current Status and Next Steps
Phase 1 (October’13 – Feb’14)

Understand application I/O requirements for Exascale
Background work understanding existing collective I/O and their
drawbacks

Phase 2(March’14 – September’14)
Develop solution framework
Preliminary architecture

Phase 3 (October’14 – September’15)
Implementation

Phase 4 (October’15 -)
Detailed Evaluations for various applications/file system back-

ends

Acknowledgements for the work

Giuseppe Congiu (ExCol Architecture and Development)

Malcolm Muggeridge (VP, Xyratex ETG) and the Xyratex Team

Key references

•[ross2013]Memory conscious collective I/O for Extreme Scale HPC systems , Yin Lu et al

•[Vetter2008]HPC Interconnection networks: The Key to Exascale Computing, J.S. Vetter, et al

•[Yu2008] Parcoll:Partioned Collective I/O on the Cray XT, Weikuan Yu, et al

•[Zhang2008]Making Resonance a Common Case:A High Performance Implementation of

Collective I/O on Parallel File Systems, Xuechen Zhang, et al

•[Liao2008]Dynamically adapting file domain partitioning methods for collective I/O based on

underlying parallel file system locking protocols, We-Keng Liao, et al

•[Chen2011]LACIO: A New Collective I/O Strategy for Parallel I/O Systems, Yong Chen, et al

•[He2011]Pattern Aware File Re-organisation in MPI-IO , He, et al

•[ROMIO] http://www.mcs.anl.gov/research/projects/romio/

http://www.mcs.anl.gov/research/projects/romio/

Thank You
Sai_Narasimhamurthy@xyratex.com

	Collective I/O for Exascale I/O Intensive Applications
	Agenda
	Goal of the work �
	Exascale10 a quick background �
	Exascale10 a quick background.. �
	Exascale10 a quick background.. �
	Exascale10 a quick background.. �
	DEEP-ER EU project, a short background�
	DEEP-ER project, a short background�
	DEEP-ER project, a short background�
	Exascale I/O Intensive apps: Key Requirements �
	The Small I/O Problem�
	Existing Collective I/O (2 Phase I/O)
	2-Phase I/O Limitations
	Collective I/O - Limitations�
	ExCol - Solution Framework�
	ExCol- Solution framework�
	ExCol Methods - Example
	Current Status and Next Steps�
	Acknowledgements for the work ��
	Key references��
	Thank You

