
 I/O Dispatcher (IOD)

-Transactional Burst-Buffer
above DAOS/Lustre

Xuezhao Liu

EMC FastData Group

Agenda

• EMC aBBa interposed into HPC storage stack

• IOD enabled transactional BurstBuffer above
DAOS/Lustre

• Summary

2

Shared and Bursty I/O of HPC APP

• Shared or partially shared file usage becomes the
predominant method

• Burstiness of I/O
• For 98% of the time, the I/O system was utilized at less than 33% of peak

I/O bandwidth. (ANL, BG/P, 2011)

• High peak bandwidth mainly for checkpointing

• EMC aBBa fully fits the gap between APP and PFS

A New Storage Tier -- Burst Buffer
• EMC built prototype burst buffer systems at SC11/SC12/SC13

• 4x faster checkpoint

• Jitter-free co-processed analysis

• 30% total time to completion reduction

Workflow without
burst buffers

30% faster workflow
with burst buffers

• Existing disk-based storage stack will not scale

• Disk-only too expensive for bandwidth

• Flash-only too expensive for capacity

aBBa – Network Flash Appliance
• Active Burst Buffer Appliance - aBBa

– ABBA = Flash + Compute in the network

– File System Client Offload to Dedicated Burst Buffer Node:
ABBA

– Flash component as cache write-back

• Deliver the high BW needed by CN’s

• Allow use of disks for capacity with low disk BW

• Allow provisioning the storage system for capacity and average
BW not peak

• Allow store checkpoint data until drained slowly to PFS, fast
recovery in case of failure

– ABBA is File System agnostic (Lustre, Isilon, PanFS, HDFS, etc.)

– PLFS (Parallel Log-structured FS) is key

– Application offload to ABBA: Visualization, analytics co-
processing .

PLFS’ Motivation: N-1 Concurrent Writing doesn’t Scale

• Many scientific applications
create checkpoints using small,
strided, concurrent writes to a
shared file (N-1 checkpoint)

• Small strides, small writes

• May be un-aligned

– Read-modify-write

• Lock contention

• Disk seeking

PLFS Virtual Layer

/foo

host1 host2 host3

/foo/

host1/ host2/ host3/

131 132 279 281 132 148

data.131

indx

data.132 data.279 data.281

indx
data.132 data.148

indx
Physical Underlying Parallel File System

Agenda

• EMC aBBa interposed into HPC storage stack

• IOD enabled transactional BurstBuffer above
DAOS/Lustre
– General introduction

– Innovative semantics (transactional object storage,
semantics awareness)

– Interactions with DAOS

• Summary

8

Fast Forward I/O Architecture

9

Compute
Nodes

I/O Nodes
Burst Buffer

Storage
Servers

Application Lustre Server

MPI-IO

I/O Forwarding Client

Lustre Client
(DAOS+POSIX)

I/O Forwarding Server

I/O Dispatcher

NVRAM

HDF5
VOL POSIX

HPC Fabric
MPI / Portals

SAN Fabric
OFED

I/O Dispatcher

I/O rate/latency/bandwidth matching
• Burst buffer / prefetch cache
• Absorb peak application load
• Sustain global storage performance

Layout optimization
– Application object aggregation / sharding
– Upper layers provide expected usage

Higher-level resilience models
– Exploit redundancy across storage objects

Scheduler integration
– Pre-staging / Post flushing

I/O Dispatcher

Application I/O

DAOS

Application

U
se

rs
p

ac
e

K
er

n
el

Storage

Tools Query

Characteristics of Exascale Application I/O
• Application I/O will be object-oriented, not file-based

– Instantiate and persist rich distributed data structures and
application metadata

• Application I/O will be asynchronous
– Non-blocking operations initiate I/O
– Event queues signal completion

• Applications responsible for managing I/O conflicts
– I/O system provides, but does not impose, appropriate and

scalable mechanisms to resolve conflicting operations
– Avoids unnecessary serialization.

• Applications use transactional I/O model
– All operations in a given transaction will succeed or fail
– Failures in components and subsystems will occur

HDF5 Abstraction IOD Abstraction DAOS Abstraction

H5File Container Container

H5Group KV object
Set of DAOS objects

H5DataType

H5DataSpaces

H5Attribute

H5Properties

H5Reference

H5Link

KV pair in KV object Data in a DAOS object

H5Dataset Array object Set of DAOS objects

H5CommittedDatatype Blob object Set of DAOS objects

Abstraction Translation

IOD Managed Data Movement

• Transparent writing/reading between CN and BB (ION)

• Explicit, on-demand data movement between BB and
DAOS
– BB to BB

• Multi-format replica is for blobs and KVs.

• Semantic resharding is the same idea but for arrays.

– BB to DAOS – persist

– DAOS to BB – pre-stage with user preferred layout

– Purge and punch

cn ion
write

daos
persist

multi-format replica /

semantic resharding

read voidevict

pre-stage
delete

IOD Array-Object Layout and Re-Organization

X

Y

0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

Dataset’s logical multi-dimensional
space

Array object’s physical one-dimension
space

… … …

Layout sequence -- YX

Layout sequence --
XY

… … …

Contiguous layout

X

Y

0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

… … … … … … …

Layout sequence --
YX … … … … … … …

Layout sequence --
XY

Chunked layout

IOD Transaction Properties
• Atomic writes – either all writes in a transaction are

applied or none of them are.
• Commutative writes – concurrent writes are

effectively applied in TID order, not time order.
• Consistent reads – all reads in a transaction may "see"

the same version data even in the presence of
concurrent writers.

• Multiple objects – any number of IOD objects within
one container may be written in the same transaction.

• Multiple threads – any number of threads and/or
processes may participate in the same transaction.

IOD Transaction Status Diagram

16

IOD	Blob	Object	Storage	on	DAOS	

• Virtual	view:		

OST0	 OST1	 OST2	 OST3	

D-Shard1	 D-Shard2	 D-Shard3	D-Shard0	

“Blob	object,	size	1GB,	round	robined	across	
the	DAOS	shard	ID	+	IOD	object	ID	object	in	d-
shards	{0-4}	in	segments	of	256MB”	

I-Shard0	 I-Shard1	 I-Shard2	 I-Shard3	

IOD Array Object storage on DAOS
IOD	Array	Object	on	ION’s,	
stream	per	writer,	migrate	

seman cally	to	DAOS	
	

DAOS	Storage	Target	 DAOS	Shard	

IO
N
’s
	

HDF	Dataset	
IOD	Array	Object	

IOD	Metadata:	{3x3x3}	Arry	object,	cell	size	
1048576,	round	robined	across	d-shards	{0-4}	in	
array	seman c	columns	ordered	from	x=0	..	x=2”	

Agenda

• EMC aBBa interposed into HPC storage stack

• IOD enabled transactional BurstBuffer above
DAOS/Lustre

• Summary

Summary
• EMC aBBa (Active Burst Buffer Appliance)

– Matches the bursty I/O needs of the SC
– Match the available slower disk system to the checkpoint draining
– Allow to reverse the trend of disk for BW to disk for capacity
– Application offloading: visualization, analytics co-processing

• I/O Dispatcher extended transactional burst-buffer
– A buffering/optimizing layer above DAOS/Lustre
– Richer/closer mechanisms provided to application
– Transactional object storage with 3 major object types (KV, blob, array)
– Semantics awareness and data re-organization
– Fully asynchronous APIs
– Natural well support for random writing (PLFS)
– Developing in progress, demonstrated internally …
 will be open-source (LGPL)

Q&A

Thanks
For IOD related information please contact:

John.Bent@EMC.com
Xuezhao.Liu@EMC.com

mailto:John.Bent@emc.com
mailto:Xuezhao.Liu@EMC.com

IOD in FF stack

Function shipping client

HDF5 library + VOL plugin

Parallel application

CNs

IONs

Fabrics

Global
storage

CN 0
Rank 0, 1...

CN 1
Rank a, a+1...

…
CN n

Rank x, x+1...

 Process group Process group

Function shipping server

IOD
(With POSIX BB)

DAOS client

ION 0 ION m
…

DAOS

Function
shipping
server’s
process
space

Functio
n

shipping
server’s
process
space

IOD Sub-modules Overview
API front-end

Task q
u

eu
e Working thread

Pool

Executing-Engine

Event-Queues

Container manager

Object manager

KV object
KV-store

BLOB/ARRAY

PLFS

POSIX/DAOS
storage accessing

In
ter-IO

D
s co

m
m

u
n

icatio
n

Transaction manager

I/O scheduler

Parallel Log-structured FS (PLFS)

• PLFS manages data movement on ABBA

• PLFS organizes data for efficient bidirectional read/write CN  ABBA
 Lustre

• PLFS guarantees just in time data movement between ABBALustre
(drains data between checkpoints; pre-fetches data when needed)

• PLFS + ABBA guarantee fast checkpoint, removes bursty disk access
behavior

• PLFS + ABBA co-processing offload visualization from CN’s and guarantee
jitter free compute

• Middleware SW management for ABBA

Other Benefits with PLFS not Shown
• Better data organization

– Faster reads
– Applications no longer need to tune IO

• Directory sharding
– More file metadata op/s
– N-N create phase much faster
– (Directory metadata ops like mkdir are slower)
– Federate multiple filesystems into one namespace

• About to show seamless integration of flash
• Many other possibilities for future research

– e.g. data services like dedup, data integrity, compression, etc

EMC Lustre activities: VNX HPC Series
• High IOPS/

Throughput

• Small Form Factor

• High Density

• Best Price/
Performance

• Enterprise
Reliability,
Availability and
World class Service

VNX7500 VNX5700 VNX5100 VNX5500 VNX5300

Ideal for
 Meta Data

Storage

Ideal for Meta Data
And Object

Storage

EMC Lustre activities: VNX HPC Series

• Base Configuration is a Single Rack offering
– 720 TB Capacity, 8 GB/s Performance

– Pre-racked and configured VNX5100 and VNX7500

– Servers for Management and File System

• Single Point of Management via Management Console
from Terascala

• Application Ready - Pre-configured and tuned Lustre
Parallel File System

• Infini-band (QDR) interface to computational node

IOD’s Methodologies
• Objects instead of files

– Blob objects for traditional sequences of bytes
– Key-value stores for smaller get/put operations (MDHIM)
– Array objects for semantic storage of multi-dimensional structure data

• Containers instead of directories
– Snapshots for efficient COW across sets of objects
– Transactions for atomic operations across sets of objects

• List I/O all the way through the stack
– Reduce trips across network

• Everything fully asynchronous with distributed transactions
– Reads, writes, commits, unlink, etc across sets of objects

• Explicit Burst Buffer management exposed to APP
– Migrate, purge, pre-stage, multi-format replicas, semantics resharding

• End-to-end data integrity
– Checksums store with data, APP can detect silent data corruption

• Co-processing analysis on in-transit data
– Query and reorganize the placement of data structures before analysis shipping

