

Shinji Sumimoto

Fujitsu Limited, a member of OpenSFS

Oct.17 2013 @APAC LUG 2013, Tokyo

FEFS* Performance Evaluation

on K computer and Fujitsu’s

Roadmap toward Lustre 2.x

Copyright 2013 FUJITSU LIMITED

*: "FUJITSU Software FEFS"

Based on
LUG2013 Slides

Fujitsu Joins OpenSFS

Copyright 2013 FUJITSU LIMITED 1

Outline

RIKEN and Fujitsu jointly developed
“K computer”

Now in Public Operation, and still continuing system
software tuning for more suitable.

Outline of This Talk

K computer and FEFS Overview

Performance Evaluation

Issues towards Exascale

Fujitsu’s Roadmap towards Lustre 2.x

Copyright 2013 FUJITSU LIMITED 2

System Overview of K computer

 Fujitsu’s 45nm technology

 8 Core, 6MB Cache Memory and MAC on
Single Chip

 High Performance and High Reliability
with Low Power Consumption

 With 4 Computing Nodes

 Water Cooling: Processors, ICCs etc

 Increasing component lifetime and
reducing electric leak current by low
temperature water cooling

Rack：High Density
 102 Nodes on Single Rack
 24 System Boards
 6 IO System Boards
 System Disk
 Power Units

Processor: SPARC64TM VIIIfx

System Board: High Efficient Cooling

Our Goals
 Challenging to Realize World’s Top 1 Performance
 Keeping Stable System Operation over 88K Node System

(10PFlops: 864 Racks)

Interconnect Controller:ICC
 6 dims-Torus/mesh (Tofu Interconnect)

Copyright 2013 FUJITSU LIMITED 3

System Configuration

IO Network

Local File System
Global File System

Cluster Interconnect

Tofu Interconnect（IO）

Tofu Interconnect(Comp）

File Server

Shared Cache

SX
Ctrl

Core Core

MAC

Core
Core
Core

Core
Core
Core

DDR3

FMA FMA $

Tofu IF

Tofu
Hardware

Computing Node

DDR3
DDR3
Memory

Memory BW: 64GB/s

Interconnect
BW: 100GB/s

8Core Processor

Hardware
Barrier

Control Management Maintenance

Potal

Frontend

Copyright 2013 FUJITSU LIMITED

Server
s

4

IO Architecture of “K computer”

IO System Architecture

Local Storage for JOB Execution：
ETERNUS(2.5inch, RAID5)

Global Storage for Shared Use：
ETERNUS(3.5inch, RAID6)

Configurations of each file
system is optimized for each.

Local File System：
Over 2,400-OSS
(for Highly Parallel)

Global File System：
Over 80-OSS
(for Big Capacity)

 5

Global Disk

Global File Server

Local Disk

Tofu Interconnect

IO node IB SW

Compute Node

Z

X

Y

Local File System Global File System

PCIe

FC

RAID

QDR

IB

Tofu

Compute

Nodes

I/O Node

Copyright 2013 FUJITSU LIMITED

FEFS Requirement of K computer

Extremely Large
Extra-large volume (100PB~1EB).

Massive number of clients (100k~1M) & servers (1k~10k)

High Performance
Throughput of Single-stream (~GB/s) & Parallel IO (~TB/s).

Reducing file open latency (~10k ops).

Avoidance of IO interferences among jobs.

High Reliability and High Availability
Always continuing file service against component failures

Low Resource Usage
 System Software including MPI runtime, file cache and OS limits its

memory usage within 10% of physical memory.

Copyright 2013 FUJITSU LIMITED 6

Design Issues for Ultra Large Scale File System

Keeping user’s available memory over 90% of
physical memory

Clients requires o(# of Servers) memory statically

Minimizing impact of OS jitter to application
performance

llpings among all clients and OSSs are terrible

Parallel IO performance

Leveled I/O and Communication Performance among
Servers and Network Links

RAS

Recovery Performance

Copyright 2013 FUJITSU LIMITED 7

Keeping user’s available memory over 90% of

physical memory

Strategy:

Limiting file buffer cache for dirty buffers

Minimizing local buffer usages

Minimizing Number of OSTs

Issue:

System Software including MPI runtime and OS
limits its memory usage within 10% of physical
memory.

Basic Memory Allocation Policy of Lustre is pre-
allocation for max size system.

Copyright 2013 FUJITSU LIMITED 8

Memory Issue: Request Buffer (1)

 Issue

Request buffer on client is pre-allocated by #OSTs in Lustre.

• Buffer size = 8KB x 10 x #OSTs / request

 #OST=1,000 ⇒ 80MB / request

 #OST=10,000 ⇒ 800MB / request

Our Approach

On demand allocation: Allocate request buffer when it required.

Copyright 2013 FUJITSU LIMITED

…

Pre-allocated

Used for requests

to be sent

Current Lustre

Used

=Allocated

FEFS

Unused
Allocate when

it needed

9

Memory Issue: Request Buffer (2)
 Issue

When create a file, client allocates “24B x Max. OST index” size of
request buffer. (to store message sent from MDS)

 OST index = 1,000 ⇒ 23KB / request

 OST index = 10,000 ⇒ 234KB / request

Our Approach

 Step-1: Reduce buffer size to “24B x #Existing OSTs”. (done)

 Step-2: Minimize to “24B x #Striped OSTs”.

Copyright 2013 FUJITSU LIMITED

Request

Request

Request

Request
Request
Request

Current Lustre Step-2

OST 0
OST 1

OST m

Request

Step-1

OST 0
OST 1

OST n

OST 0
OST 1

Request

Request In the case of

stripe count =2

FEFS

10

Request Size: OST data sent in close
 Issue

When a client closes a file, OST data (including all OST information) is
transferred from MDS to the client. ⇒Increase in proportion to #OSTs

• OST data size = “32B x #OST”.

 1,000 OSTs ⇒ 31KB / close

 10,000 OSTs ⇒ 312KB / close

Our Approach

Only send striped #OST data instead of ALL OSTs.

• ex. Stripe count=1 ⇒ 1 OST data is sent.

Copyright 2013 FUJITSU LIMITED

OST data

(all OSTs)

Header

Body

MDS memory Network

Current Lustre

OST data

Header

Body

FEFS

OST data

Header

Body

MDS memory Network

OST data

Header

Body

11

Improving Application Performance:

Minimizing OS jitter

 ll_ping Problem:

All clients broadcast monitoring pings to all OSTs (not OSS)
at regular intervals of 25 seconds. 100K Clients x 10K
OSTs ⇒ 1M pings every 25 seconds.

• Vast amount of pings cause performance degradation of MPI and
application.

Our Solution: Stopping broadcasting pings on clients.

• Other pings, such as for recovery and for I/O confirmation, etc., are
kept

 ldlm_poold Problem:

Operation time of ldlm_poold on client increases in
proportion to the number of OSTs. It manages the pool of
LDLM locks. It wakes up regular interval of 1sec.

Our Solution: Reduce the processing time per operation of
ldlm_poold by divide the deamon’s internal operation.

Copyright 2013 FUJITSU LIMITED 12

Improving Application Performance:

Minimizing Network Traffic Congestion by ll_ping

 ll_ping Problem: Network congestion and request timeout
cause: #of monitoring pings ∝ “#of clients x #of servers”

MPI and file I/O communication degradation.

 Application performance degradation by OS jitter.

Our Solution: Stopping interval ll_ping

Copyright 2013 FUJITSU LIMITED

OSS MDS

File Servers

Compute nodes

Client

I/O Network

13

llping Impacts for MPI Performance on 1PF System

(llping period 20min)

4000.00

40000.00

1 10 100 1000 10000 100000 1000000

Try 1

Try 2

Try 3

Try 4

Try 5

MPI_Allgather affects maximum

2 times worse at 5 executions MPI_Barrier affects 400-500us class

of OS noise （40-50 times worse）

Copyright 2013 FUJITSU LIMITED 14

10 20

400

800

Collaborative work with RIKEN on K computer

Removing llping Affects for MPI Performance on 1PF System

4000.00

40000.00

1 10 100 1000 10000 100000 1000000

Try 1

Try 2

Try 3

Try 4

Try 5

MPI_Allgather achieves the same

performance at 5 executions MPI_Barrier affects max. 250us class

of OS noise （Max. 25 times worse）

Copyright 2013 FUJITSU LIMITED 15

10

Time(s)

100

200

300

Collaborative work with RIKEN on K computer

I/O Zoning: I/O Separation among Jobs

 Issue: Job’s I/O conflicts on hardware.

 Sharing disk volumes, network links among jobs cause I/O performance
degradation because of their confliction.

Our Approach: Separate hardware among jobs.

 Separating of disk volumes, network links among jobs as much as
possible.

Job A Job B

No-good: w/ I/O Confliction

IO Node

Local Disk File of Job A

File of Job B

Z

XY
Job A Job B

Good: w/o I/O Confliction

File of
Job A

File of
Job B

Network

Confliction

Disk

Confliction

16 Copyright 2013 FUJITSU LIMITED

FEFS Performance Evaluation on K computer

Environment: Full system of K computer 864 Racks

Target: Local File System:

OSS：IO Node（Memory 16GB） x 2,592

• OST：ETURNUS（RAID5+0｛（4D+1P）x2｝ x2 set） x 2,592 （5,184 OST）

MDS： Xeon 2.00 GHz x2，Memory 64GB

• MDT：ETRUNUS（RAID1+0（4D+4M） x4 set） x1

Benchmark Programs:

IOR： w/,w/o IO Zoning

mdtest: MDS Performance Evaluation

Copyright 2013 FUJITSU LIMITED 17

Local FS I/O Performance on 10PF

without I/O Zoning

IOR Results using 2,575 OSSs (w/o slow 17 OSSs)

Two Issues

POSIX shared file: Slow Read Performance

MPI-IO shared file: Slow Read/Write Performance

POSIX

File/Proc

POSIX

Shared File

MPI-IO

Shared File

Write 965 GB/s 929 GB/s 659 GB/s

Read 1,486 GB/s 983 GB/s 847 GB/s

Copyright 2013 FUJITSU LIMITED 18

Collaborative work with RIKEN on K computer

0

500

1000

1500

2000

2500

0 10 20 30 40 50

G
B

/s

Elapsed time [sec]

IOR read （LIO統計情報）

POSIX file-per-proc

POSIX shared

MPI-IO shared

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50

G
B

/s

Elapsed time [sec]

IOR write （LIO統計情報）

POSIX file-per-proc

POSIX shared

MPI-IO shared

IOR Performance Statistics Analysis by Collectl

Write:

1.2 TB/s Sustained
Performance

No reason for slow MPI-IO

Read:

Sustained Over 2.0 TB/s
Performance on File/Proc

Sustained 1.75 TB/s on
Shared/MPI-IO

• Shared: Slow Startup/Ending

• MPI-IO: Fast Startup/
 Slow Ending
Seems to be serialized by
something.

Copyright 2013 FUJITSU LIMITED 19

(OSS Statistics)

(OSS Statistics)

Collaborative work with RIKEN on K computer

MPI-I/O： Performance Degradation Analysis

Measured Elapsed Time of Open-Read/Write-Close

 The same level time of POSIX File/Proc and Shared File

 The open and close time of MPI-IO are the reason for performance
degradation.

11.0 3.3 23.5

25.2
34.4

34.6

8.5

0

10

20

30

40

50

60

70

POSIX
file per proc

POSIX
shared file

MPI-IO
shared file

ク
ラ
イ
ア
ン
ト
あ
た
り
の
平
均
処
理
時
間

[s
e

c]

IOR write (2575 LIO, 8 pro/LIO)

close

write

open

0.9 3.5
11.5

20.6
23.5

23.6

19.1

0

10

20

30

40

50

60

POSIX
file per proc

POSIX
shared file

MPI-IO
shared file

ク
ラ
イ
ア
ン
ト
あ
た
り
の
平
均
処
理
時
間

[s
e

c]

IOR read (2575 LIO, 8 pro/LIO)

close

read

open

Copyright 2013 FUJITSU LIMITED 20

E
la

p
se

 T
im

e/
C

lie
nt

 (
S
ec

)

E
la

p
se

 T
im

e/
C

lie
nt

 (
S
ec

)

Collaborative work with RIKEN on K computer

MPI-IO：The Reason for Performance

Degradation
MPI-IO library uses barrier on open and close file

 This means 2GB I/O is too small to realize enough bandwidth
for K computer.

open read/write close

open read/write close

open read/write close

open read/write close

Barrier

open read/write close

open read/write close

open read/write close

open read/write close

Barrier Barrier Barrier

IOR Execution Time

Overhead

POSIX file per proc
POSIX shared file

MPI-IO shared file

Rank 0

Rank 1

Rank 2

Rank n

Rank 0

Rank 1

Rank 2

Rank n

Copyright 2013 FUJITSU LIMITED 21

IOR Execution TIme

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40

R
ea

d
 [

G
B

/s
]

Elapsed time [sec]

Local FS MPI I/O Performance on 10PF

with I/O Zoning
 Same Level Performance to File/Proc on Read Performance

 I/O and Network Congestion Reduces IOR Performance

 POSIX Shared File Performance will also speed up w/ I/O Zoning.

Copyright 2013 FUJITSU LIMITED 22

IOR MPI-I/O w/ I/O Zoning w/o I/O Zoning

Write 0.67 TB/s 0.66 GB/s

Read 1.46 TB/s 0.85 GB/s

OSS Disk Statistics Write OSS Disk Statistics Read

Over 3 TB/s

Performance

1.35 TB/s Peak

3.2 TB/s Peak

Collaborative work with RIKEN on K computer

Global FS IOR Performance
 System Configuration:

OSS：Xeon 2.00 GHz x 2（Memory 192GB） 90 Units

• OST： ETURNUS（RAID6（6D+2P）x4 set） 2800 OSTs

MDS： Xeon 2.00 GHz x2，Memory 64GiB

• MDT：ETURNUS（RAID1+0（4D+4M） x4 set） 2 Units

Copyright 2013 FUJITSU LIMITED 23

IOR File/Proc

Write 207 GB/s

Read 235 GB/s

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180

G
B

/s

Elapsed time [sec]

IOR read (90 OSS, 2880 OST)

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180

G
B

/s

Elapsed time [sec]

IOR write (90 OSS, 2880 OST)

Collaborative work with RIKEN

on K computer

Mdtest: Metadata Processing Performance

Metadata performance degradation occurs by increasing
number of clients

Copyright 2013 FUJITSU LIMITED

Evaluated on 10PF
Evaluated on 7PF

24

mdtest Number of Clients

Collaborative work with RIKEN on K computer

Reason for Degradation of mdtest Performance

 Journal data write processing per 5 seconds is the reason for mdtest
performance degradation.

 Ex: 20K ops create performance without journal writing

Copyright 2013 FUJITSU LIMITED

CPU

Network

Disk

mdtest rmdir
create

unlink

directory stat file stat

25

Journal Data writing per

5 seconds

Meta data processing is stopped

by Journal data writing

mkdir

Collaborative work with RIKEN on K computer

C
P

U
 %

M

B
/s

D

is
k

A
cc

es
s

M
B

/s

Issues Towards Exascale File System

 FEFS already has exa-byte level functions, however several
problems for extra large file system.

Resource Usage: Especially Memory

Client must mount whole of OSTs statically, however in MPI-IO case, a
client only does file I/O into single OST. Needs to be dynamically mounted

 Still needs to reduce memory consumption

Number of OSTs was reduced to half for Local FS compared with design
phase

OS Jitter

 llping does not fit to thousands of OSTs system

 Performance Leveling among OSTs and Network Links

 Keeping OST performance stable is very important to keep storage
performance

Copyright 2013 FUJITSU LIMITED 26

Fujitsu’s Roadmap towards Lustre 2.x

Already started with Intel applying FEFS extension to
Lustre 2.x, and will plan to finish by mid FY2015

Fujitsu will implement the rest of functions.

Copyright 2013 FUJITSU LIMITED 27

FY2012 FY2013 FY2014
Q3 Q4 Q1 Q2 Q3 Q4

Basic Extension: Large Scale. Jitter Elimination, etc.

Q1 Q2 Q3 Q4
FY2015
Q1 Q2 Q3 Q4

STEP-1 STEP-2 STEP-3 STEP-4 STEP-5 and next

Lustre 2.6▽ Lustre
Release

Intel/Fujitsu
(Whamcloud)

Lustre 2.8▽

QoS, Directory Quota, IB Bonding etc… Fujitsu

Lustre 2.4 ▽

Lustre 2.7▽ Lustre 2.5▽ Lustre 2.9▽

Fujitsu’s Contribution Work with Intel to

Lustre 2.x Roadmaps

Copyright 2013 FUJITSU LIMITED 28

Period Phase Topics

2011/12

– 2012/3
Selection of Fujitsu’s

Extensions to Lustre 2.x by Intel
20 of 60 items selected

2012/4

– 2012/6
Making Proposals by Intel Three Phase Proposal

2012/9

– 2013/3 First Phase
Architecture Interoperability,

LNET and OS Jitter update

2013/4

– 2013/9
Second Phase Memory Management

2013/10

– 2014/3 Third Phase
Large Scale Performance,

OST management

20 Selected Fujitsu Extensions to Lustre 2.x

Copyright 2013 FUJITSU LIMITED 29

No Subproject / Milestone Category Phase
1 LNET Networks Hashing Performance 1
2 LNET Router Priorities RAS 1
3 LNET: Read Routing List From File Large Scale 1
4 Optional /proc Stats Per Subsystem Memory Reduction 2
5 Sparse OST Indexing Sparse OST 3
6 New Layout Type to Specify All Desired OSTs OST selection 3
7 Reduce Unnecessary MDS Data Transfer Meta Performance 3
8 Open/Replay Handling Memory Reduction 2
9 Add Reformatted OST at Specific Index OST Dynamic Addition 3
10 Empty OST Removal with Quota Release OST Dynamic Removal 3
11 Limit Lustre Memory Usage Memory Limit 2
12 Increase Max obddev and client Counts Large Scale 4orF
13 Fix when Converting from WR to RD Lock Bug Fixes (fcntl) 4orF
14 Reduce ldlm_poold Execution Time OS Jitter 1
15 Ability to Disable Pinging OS Jitter 1
16 Opcode Time Execution Histogram For Debug 4orF
17 Endianness Fixes Architecture Inter-op. 1
18 OSC Request Pool Disabling Memory Reduction 2
19 Pinned Pages Waiting for Commit Memory Reduction 2
20 Errno Translation Tables Architecture Inter-op 1

 Copyright 2013 FUJITSU LIMITED

Summary and Future Work

We described performance evaluation of FEFS on ‘K
computer’ developed by RIKEN and Fujitsu.

Over 1.4 TB/s performance (Over 3TB/s Read Performance
except starting up and ending time)

Future Work

Rebase to newer version of Lustre (2.x)

Continue to Contribute our extensions to Lustre
Community

30

 Copyright 2013 FUJITSU LIMITED Copyright 2011 FUJITSU LIMITED 31 Copyright 2010 FUJITSU LIMITED 31 31

