

Lustre at the Australian National Computational Infrastructure (NCI)

- What is NCI ?
- Petascale Machine at NCI (Raijin)
- Root over Lustre
- Lustre Storage on the Petascale Machine
- Other Lustre Storage at NCI
- Future Plans & Collaboration Possibilities
- Lustre patch source contrib

WHAT IS NCI?

 In the Nation's capital, at its National University ...

- NCI is Australia's national high-performance computing service
 - comprehensive, vertically-integrated research service
 - providing national access on priority and merit
 - driven by research objectives
- Operates as a formal collaboration of ANU, CSIRO, the Australian Bureau of Meteorology and Geoscience Australia
- As a partnership with a number of research-intensive universities, supported by the Australian Research Council.

Our mission is

to foster ambitious and aspirational research objectives and to enable their realisation, in the Australian context, through world-class, high-end computing services

Research Outcomes

Research Objectives

Communities and Institutions/
Access and Services

Expertise Support and Development

Digital Laboratories

Data Centric Services

Compute (HPC/Cloud) and Data Infrastructure

Engagement: Research Communities

Specialised Support

- Climate Science and Earth System Science
- Astronomy (optical and theoretical)
- Geosciences: Geophysics, Earth Observation
- Biosciences: Bioinformatics
- Social Sciences
- Growing emphasis on data-intensive computation
 - Cloud Services
 - Earth System Grid

Specialised Support: Scientific Visualisation

- NCI VizLab in existence since early-1990s
- Innovative software development (Drishti and Voluminous)
- Skilled visualisation programmers who deal with multi-terabyte datasets
- Lustre use-case: access from visualization desktops, driving video walls, ondemand GPU clusters, on-demand volume visualization

http://nci.org.au/specialised-support/scientific-visualisation/vizlab-showcase/ http://youtu.be/1JxUYUKSnLs

Engagement: Government Infrastructure Initiatives

Engagement with RDSI and NeCTAR

- Approximately \$100M in funding from the Australian Federal Government
- RDSI National Storage Initiative
 - NCI High-Performance Data Node
 - Hosting data collections of national importance, seeding storage initiatives across the country

- NeCTAR National Research Cloud Initiative
 - High-Performance node of NeCTAR Cloud
 - Major Participant in Virtual Labs (VLs)
 - Weather and Climate VL
 - All-Sky Virtual Observatory VL
 - Contributing to Characterisation VL,
 Virtual Exploration Geophysics
 Laboratory (VEGL)
 - Tools—volume visualisation in the cloud

PRIORITY SCIENCE AREAS

Engaging with Priority Research: Climate

Case Study: Building a National Climate Modelling Capability

Partners: CAWCR (Bureau of Met, CSIRO), ARC Centre for Climate Systems Science, NCI, Fujitsu

Goals:

- Enhance the value of investment in ACCESS model development
- Harness and develop Australia's international value in Climate Research (CAWCR + AU Universities)
- Build research infrastructure in harmony with operational environment

Requirements:

- High Performance Computing at NCI available at competitive level to support Climate
- Provide integrated environment for supporting:
 - Simulations
 - Data repository: Online and Deep Archive
 - Cloud capability for data processing, analysis and visualization

INFRASTRUCTURE

Background: Evolution of Peak Facilities at NCI/APAC

System (Top500 rank)	Procs/ Cores	Memory	Disk	Peak Perf. (Tflops)	Sustained Perf. (SPEC)
2001–04 Compaq Alphaserver (31)	512	0.5 Tbyte	12 Tbytes	1 TFlop	2,000
2005–09 SGI Altix 3700 (26)	1920	5.5 Tbytes	30 (+70) Tbytes	14 Tflops	21,000
2008–12 SGI Altix XE (-)	1248	2.5 Tbytes	90 Tbytes	14 TFlops	12,000
2009–13 Sun Constellation (35)	11,936	37 Tbytes	800 Tbytes	140 TFlops	240,000
2013– Fujitsu Primergy (24)	57,500	160 Tbytes	12.5 Pbytes	1200 Tflops	1,400,000+

Fujitsu Primergy Petascale System (2013–)

Current Infrastructure - Compute

- Raijin—Fujitsu Primergy cluster—June 2013
- Approx. 57,500 Intel Sandy Bridge (2.6 GHz)
- 157 TBytes memory, 8 PBytes short term storage
- FDR Infiniband
- 150 GB/s bandwidth to filesystem
- Centos 6.4 Linux; PBS Pro scheduler
- Good Performance well balanced, appreciated
 - 1195 Tflops, 1,400,000 SPECFPrate
- Significant growth in highly scaling application codes
 - Largest: 40,000 cores; many 1,000 core tasks

Current Infrastructure - Storage

Data Storage

- •HSM (massdata) DMF based: 8PB as at September 2012 [2 copies]
- •/projects: SGI CXFS (Interactive f/s space) HSM (shared with massdata), achieves 2.5 GB/sec from tape
- Global Lustre Filesystem
 - 6 PB by end of 2013 and growing
 - Global bandwidth: 25 GB/sec

Current Infrastructure - Cloud

- VMware ESX cluster—providing mission-critical hosting of essential services in a high availability environment
- DCC: Specialised cluster for data-intensive applications
 - Climate, earth-system observation and bioinformatics
 - Part virtualized, part bare-metal
- Cloud computing
 - NeCTAR Research Cloud node at NCI
 - Australia's highest performance cloud
 - Architected for strong computational and I/O performance needed for "big data" research
 - Intel Sandy Bridge (3200 cores)
 - 160 TB of SSDs; 56GigE + RoCE for compute and I/O performance
 - Planning to use RoCE for LNET
 - Private cloud: RedHat OpenStack
 - SLA centric, on-demand scientific computation

ROOT OVER LUSTRE

- What is root over Lustre?
 - The root filesystem is provided by Lustre
 - We use oneSIS for provisioning with minor patches
- Why?
 - Simplicity: Ease of management
 - Diskless compute nodes
 - One golden image for multiple clusters
 - 'yum update' the entire cluster
 - Synchronous: Rolling out updates
 - Once an update is made, all nodes see it
 - Security: Better/Coherent patching
- We have been using root over Lustre since 2008

 Key feature: oneSIS loads Lustre kernel modules and parses the location of the root filesystem from its boot command line:

<u>lustreroot=10.9.103.1@o2ib3:10.9.103.2@o2ib3:</u>/images/NCI/centos-6.4-compute-03

 NCI implements root-over-lustre by modifying oneSIS. Work done by Robin Humble

http://nf.nci.org.au/wiki/OneSIS/Root-on-Lustre

- IB Flexboot provides boot over IB
- Initial bugs ironed out
- Planning to roll into next scheduled downtime window

# of Nodes	Time to boot (minutes)
1 Node	6 min.
4 Nodes (1 chassis)	6 min.
72 Nodes (1 rack)	7 min. (±11 seconds)

LUSTRE ON RAIJIN

Storage Architecture of Raijin

- Storage for the Petascale machine provided by DDN SFA block appliances
- 5 storage building blocks of SFA12K40-IB with 10 x SS8460, 84 bay disk enclosures
- Each building block:
 70 x RAID6 (8+2) 3TB 7.2k SAS pools
 20 x RAID1 (1+1) 3TB 7.2k SAS pools
 40 x RAID1 (1+1) 900GB 10k SAS pools

12 x 3TB 7.2k SAS hot spares 8 x 900GB 10k SAS hot spares

 Building blocks scale diagonally with both capacity & performance

1 x SX6025

2 x SFA12K40-IB

2 x SX6036

10 x OSS Servers

Lustre Network Fabrics for Storage Building Blocks

Fully redundant SAS enclosures, FDR IB between storage and OSSes and uplinks to Raijin

Lustre Network Fabrics for Metadata Building Blocks

- Metadata storage is based on the DDN EF3015 storage platform
- Each metadata storage block has 12 RAID1 (1+1) 300GB 15kSAS pools. There are 2/4 storage blocks for each MDS.
- Fully redundant Direct
 Attached FC8 fabric
- Fully redundant FDR IB uplinks to main cluster IB fabric

•Lustre servers are Fujitsu Primergy RX300 S7 Dual 2.6GHz Xeon (*Sandy Bridge*) 8-core CPUs 128/256GB DDR3 RAM

6 MDS (3 HA pairs) **50 OSS** (25 HA pairs)

All Lustre servers are diskless

Current image is CentOS 6.3, Mellanox OFED 2.0, Lustre v 2.1.6, corosync/pacemaker (image was updated 8 September – simply required a reboot into new image)

HA configuration needs to be regenerated whenever a HA pair is rebooted

5 Lustre file systems: /short – scratch file system (rw) /images – images for root over Lustre used by compute nodes (ro) /apps – user application software (ro) /home – home directories (rw)

/system - critical backups, benchmarking, rw-templates (rw)

•NCI MDS requirements:

MDT Storage on LVM on top of software RAID1 configuration of hardware RAID1 LUNs - 4-way mirror (1+1) + (1+1).

•NCI acceptance testing requirements for the scratch file system, /short

Demonstrate IOR exceeds 120GB/s for sustained streaming write performance: Achieved 143 GB/s (Updated after reconfiguration 152 GB/s)

Demonstrate IOR exceeds 7.5GB/s for random 1MB write performance: Achieved 75.5 GB/s

Demonstrate mdtest test can create, stat and delete 65536 files in a shared directory within 53 seconds:

Achieved

File Creation	3.57s
File Stat	2.88s
File Delete	6.20s
Total	12.65

File System	RAID	OST/OSS	Total OST	Total Size	Performance*
/short	RAID6 (8+2) 7.2k SAS	7	350	7.5PB	152 GB/s
/images	RAID1 (1+1) 10k SAS	2	100	80TB	17.8 GB/s**
/apps	RAID1 (1+1) 10k SAS	2	100	80TB	17.9 GB/s**
/home	RAID1 (1+1) 7.2k SAS	1	50	135TB	6.9 GB/s**
/system	RAID1 (1+1) 7.2kSAS	1	50 * Aggregate Sequ ** File system wa		8.1 GB/s dth with IOR (Aug 2013)

Currently investigating a Lustre read performance issue:
 During acceptance testing in Dec 2012 /short read performance was 160 GB/s.

 From later benchmarking (May 2013) /short read performance is 88 GB/s

SITE-WIDE LUSTRE

- In order to avoid moving data between clusters and storage, the NCI has implemented a site-wide Lustre F/S, visible both to compute clusters and virtual machine hosts
- We have decided to use islands of storage to create multiple Lustre F/S which are vendor/technology specific

Site-wide Lustre – Functional Composition

 Site-wide Lustre to tie together HPC, Cloud and Visualization

 Complex workflows, post-simulation, will use the NCI's NeCTAR OpenStack node, and requires access to Lustre

 We are keen to implement in the future: Lustre HSM, WAN and Kerberos feature sets

A recent bug fix on Raijin

WORKING WITH LUSTRE UPSTREAM

- Bug fix by Dongyang Li (NCI)
 - open(2) an existing file with O_RDONLY |
 O_CREAT fails with -EROFS, ro mounted client

 With thanks to Dale Roberts and Dr Andrey Bliznyuk (NCI, User Support Services)

/apps is read only mounted

10.9.103.2@o2ib3:10.9.103.1@o2ib3:/apps on /apps type lustre (**ro**,nosuid,localflock)

Got -EROFS when trying to run Fortran apps.

open("/apps/foo", O_RDONLY|O_CREAT, 0600) = -1 EROFS (Read-only file system)

GCC fortran runtime tends add O_CREAT flag when opening files.

Remove the flag will work. However...

On a local ro mounted ext4:

- open("/apps/bar", O_RDWR|O_CREAT, 0600) = -1 EROFS (Read-only file system)
- open("/apps/bar", O_WRONLY|O_CREAT, 0600) = -1 EROFS (Read-only file system)
- open("/apps/bar", O_RDONLY|O_CREAT, 0600) = 3

Open is handled on MDS.

if (client is ro mount && the open has O_CREAT)
 -EROFS;

At least check if the file is there first!

Don't bother the O_CREAT if we can do the open.

Patch landed for 2.5 release.

- A JIRA ticket has been opened to track the issue
 - https://jira.hpdd.intel.com/browse/LU-3557
 - Affected versions: 2.1.X to 2.4.0
- Test and commit your patch locally using acceptancesmall.sh
- The patch follows the Requirements for patch submission:
 - The Commit Comments are well formatted and useful
 - Verify patch follows Lustre Coding Guidelines (at least "git show | contrib/scripts/checkpatch.pl -" passes)
 - A regression test has been created that fails without the patch and passes with the patch
 - The patch has the appropriate signed off by line

- The patch has been uploaded to Gerrit
 - git push ssh://USER@review.whamcloud.com:29418/fs/lustre-release HEAD:refs/for/master
 - http://review.whamcloud.com/#/c/6893/
- Request at least two Patch Inspection approvals (preferably ones with experience in this area of code) on the Gerrit change

- The branch gatekeeper will review the patch, confirm the test results, and submit it when everything goes well
 - Automatically Build and Test
 - Triggered once you refresh the patch.
 - After a successful build, automatic test system maloo will spin up VMs, carry out the test using Auster, finally push the result back to review board.

Find more at

https://wiki.hpdd.intel.com/display/PUB/Submitting +Changes

Finally backport the patch to Raijin :-)

Thank you

Visit us at:

www.nci.org.au

Daniel Rodwell daniel.rodwell@anu.edu.au

Shuichi Ihara sihara@ddn.com