User-defined Transport Protocols for
Lustre

Eric Kinzie eric.kinzie@exelisinc.com
Linden Mercer (ARL/PSU)

Work done under contract to the Naval Research Laboratory



Introduction

* Provides a new LND (lu2kind)
e Additional layer of abstraction between LNet and network

interfaces
* Transport protocol can be implemented outside of kernel



Motivation

Network connectivity into theater not ideal
e Latency (satellite links)
* Packet loss due to congestion and physical errors
* Limited bandwidth
Data originates in theater and end-users of processed data
also in theater
Analysts stay clear of the action
Some existing applications expect to retrieve data from a
filesystem
Protocols of interest implemented outside of the kernel



UDT

 UDT (UDP Data Transport) developed at UIUC’s National
Center for Data Mining
* Key characteristics
* Explicit NACK
* Available bandwidth discovery + rate shaping
 RTT measurement (congestion window)
e Configurable congestion control algorithm
* http://udt.sourceforge.net



Architecture

* A small part of the LND operates in the kernel

* Connection management and transport protocol implemented
in daemon process

e Communication between LND and daemon process handled
by select()/ioctl()

* Messages are memory mapped



Who keeps track of what?

Kernel Daemon
* Peers * Peers
* Messages * Messages

e Connections



Connection Management

* Connections are unidirectional

e Destination IP address for connection found in NID (same as
sockind, etc.)

* Source network interface and next-hop determined by kernel
routing table/policy

* Some additional state is kept when Lustre routing involved



Transmitted Messages

Kernel Daemon Network

TXNOTI

mmap()
A/IDOK
M

m;




Received Messages

Kernel Daemon Network

START

RXNOTI

mmap()

et message

/W
‘M




Protocol Back-ends

* Designed to allow other transport layers to be glued on
e Kernel half of LND not aware of the selected protocol

* All peers use same protocol

APl with entry points similar to a sockets interface
Currently have UDT and RDS back-ends



Current Status

Software working in laboratory setting

Testing activities focused on validating correct behavior
Have demonstrated video streaming with 200ms RTT
Waiting on approval for public release of source code



Next Steps

 Performance tests

* Improved usability

* Feature Creep
* Connection encryption and/or authentication
* Load balancing
* |Pv6



