Lustre® at Blue Waters

LUG 2013

Nathan Rutman (nathan_rutman@xyratex.com)




History

2007 - University of lllinois and NCSA select IBM to
build Blue Waters, plan for 1 petaflop by end of 2012

Aug 2011 - IBM withdraws, project was "more complex
and required significantly increased financial and
technical support"

Nov 2011 - NSF approves NCSA's Cray-based
deployment of Blue Waters

July 2012 - Cray builds and installs system in 9
months, begin software/hardware scaling work

Nov 2012 - Full system available for NSF research



Stats

o Compute Current Running Jobs
o 237 Cray XEG6 cabinets N Compuitios
o 32 Cray XK7 cabinets 'Eﬁml
o 25766 clients :ﬁfm’l“aph
o 1.5 PB memory b e
o sustained petaflop computing w0\ e
et PeaK - it

e Storage
o 25 PB Lustre storage on Sonexion hardware
o 1.1 TB/s total
o 22 PB scratch

o 1.0 TB/s /scratch
e TT——



Storage

o 3 Filesystems
o home
o project
o Scratch
360 OSSs, 1440 OSTs
 Rack
o 6SSU's/12 OSS's
o Top-of-rack IB switch
« SSU
o 2 OSS's in active/active pair
o 4 0OSTs per OSS
o Each OST is MDRAID 6 8+2
o 82 7.2K fatsas 2TB drives
« MDS

o [2-drive RAID 10 300GB 15K
o 128 GB, 32 cores




Network

e Gemini 3D torus

* Fine-grained routing from clients to Cray Gemini-I1B
LNET routers

o Top-of-rack IB switch in each Sonexion rack

 TOR switches connected to Cray routers
o 16 LNET routers : 12 OSSs to match router throughput

« 2 Cray routers per FS for MDS traffic, connected to
Director-class core switch

e Core switch connected to each TOR



Software

o Lustre 2.1 servers
o diskless boot from mgmt node

e Lustre 1.8.7 clients

o First large-scale Lustre 2.1 deployment



Reliability

* 99% availability
* Full component redundancy

 Redundant path analysis for each component (mgmt
node, controller, SSU, rack, MDS, etc.)



Early scaling

HA timings
o fsck
Fine-grained routing
o large routing tables
fentl(F_UNLCK) failure
o 1.8-2.1 compat
Block bitmap reads
MDS problems
o high CPU
o "sluggishness"
o all MDS threads stuck
o "pulsing"
o cascading client timeouts
o Infinite recovery loops



MDS behavior

* Confluence of many factors
o Memory allocation race
o Inaccurate thread accounting

o Blocking callback behavior in the face of filled network
buffers

o Poor utilization of existing buffers

» Detalls presented in Paris at LAD '12
o ...but I'll talk about three of them anyhow.



Problems and Solutions

Memory Allocation race (MRP-633)
Non-visibility of buffer usage (MRP-644)
Inaccurate "queued" accounting (MRP-622)

Bad thread accounting
o Mishandled srv_hpreq_ratio (MRP-661, LU-1963)
o Missing OOM-killed thread accounting (MRP-648)
o Number of HP threads (MRP-664)

ELC on MDS threads (MRP-655)
Cancel retries (MRP-477)

Request buffer size (MRP-670)
Nonblocking lock callbacks (MRP-663)

LNET issues
o Router buffer sizing

o Network Priority
~ |Inawvailahla rniiter nacethrniinh (NMRP-ARRR)



hreads Blocking on Locks

« Sometimes we see all server threads blocked on lock
callback

¢ SOome reasons:

. blocking callback never gets sent

. router drops bl callback

. client doesn't correctly cancel

. cancel gets lost in network

. router drops cancel

. cancel response takes too long to reach mds

. backed up on router
8. queued on mds

* Only the HP thread is left

~N O Ol B W DN B



Memory allocation race

Symptoms

o NO rpc processing

o no disk activity

o high cpu load

o Sluggish MDS console response
What's happening

o rgbd buffers fill with incoming regs

o each thread sees bufs are below low-water, spinlock to create
more

o threads start to race, bogging down all cpus
What should we do?

o If anyone else is in the middle of allocating, skip it.
Results

o No more sluggishness, but the MDS can't keep up with
Incoming request rate



Request buffers

We assume buffers are being created, but hard to see.
(stat's req_gdepth was really just req_in's)

mdt.snx11003-MDT0000.mdt.req_buffer_stats=
network buffers:

created: 106496

available: 1723

idle: O

history: O

max allowed: 610801

size: 113386

total memory used: 11515 MB
requests:

active: 1022

hp active: 0

incoming: O

gueued: 103751



Request buffer size

e Symptoms
o Created - avail = active + queued
o So 1:1 buffersto rpc's
 What's happening
o Srv_max req_size = MDS_MAXREQSIZE + 1024 =113kB
o Srv_buf size = MDS_ MAXREQSIZE + 1024

o We must have enough remaining space in a buffer to accept a
srv_max_req_size for LNET to accept it.

o S0 we can only have a single req per rgbd.
 What should we do?

o If we doubled the buffer size and the average message size is
4k, we could put 113k/4k = 25 messages before the "last" one.



Request buffer size (con't)

« Results
o Actual message size ~1.4kB average

mdt.snx11003-MDT0000.mdt.req_buffer_stats=
network buffers:

created: 2048

available: 1884

idle: O

history: O

max allowed: 305400

Size: 226772

total memory used: 442 MB
requests:

active: 510

hp active: 0

incoming: O

queued: 24998



Conclusions

* Fine-grained routing - solid

 |/O data path - solid

« MD handling path - solid

 ptlrpc request handling code - shakier than we would
like

 lock callback code - not robust against req handling

e Lustre 2.1 at scale -- solid now on BW

« For any large deployment -- be prepared to do some
work!

e Lustre success vs GPFS failure



Thank You

nathan_rutman@xyratex.com



