

Lustre* on Amazon Web Services* High Performance Data Division

Robert Read robert.read@intel.com April 16, 2013

^{*} Other names and brands may be claimed as the property of others.

Lustre on Amazon Web Services

Goal

 Provide a scalable, shared filesystem for HPC applications on the cloud.

Lustre Advantages

- POSIX namespace
- Maximizes use of available resources
- Very scalable

Storage on AWS

- Storage Options
 - Ephemeral storage
 - Local storage to the instance
 - Directly attached, fastest option
 - Limited options for size
 - Disappears when instance terminates
 - Elastic Block Storage (EBS)
 - Networked storage
 - Max size 1TB per EBS volume
 - Persistent, can outlive instance
 - Not magic, still suffers from usual storage woes
 - S3 is for durable storage
 - Not coherent

Recent Enhancements

- EBS Optimized instances
 - Dedicated 500Mb/s or 1000Mb/s link for EBS
 - Effectively doubles throughput of a server node
- EBS with Provisioned IOPS
 - 100-2000 IOPS
- High I/O instances
 - 2x 1TB SSD volumes (ephemeral)
 - Can be used Cluster Compute placement group
 - Random IOPS: 120k read, 10k-85k write
 - Sequential IO: 2GB/s read, 1.1.GB/s write
- High Storage instances
 - 24x 2TB disks (ephemeral)
 - Can be used in Cluster Compute placement group
 - Sequential IO: 2.4 GB/s read, 2.6 GB/s write

(Numbers as reported by Amazon)

Deploying Lustre on AWS

- Custom Lustre Server AMI
 - Centos 6.3
 - Lustre master (pre-2.4)
- Deploy cluster with CloudFormation
 - m1.xlarge (4 core, 15GB) + EBS Optimized
 - One Availability Zone
- New filesystem is assembled as nodes boot
- Minimal coordination through DynamoDB

Loosely Coupled Lustre Initialization

- CloudFormation creates a stack of AWS resources from a template
- 2 MGS Initializes itself
- MGS updates DB with NID
- MDS formats MDT, registers with MGS, updates DB.
- OSSs format local targets, updates DB

Lustre Benchmarks

- Initial benchmarking to "kick the tires"
- Focus on micro-benchmarks
 - IO bandwidth
 - creates/sec
- More thorough evaluation of various options in progress

IOR Benchmarking Configuration

MDS

- m1.xlarge
- 8x 40GB EBS volumes
- RAIDO

■ 10 OSS

- m1.xlarge
- 4x 100GB EBS volumes
- RAIDO

32 Clients

- m1.xlarge
- 1 to 16 threads
- 16GB per client

Sequential Write (FPP)

Sequential Read (FPP)

Metadata – mdsrate Configuration

- MDS
 - (same)
- 2 OSS
 - 4x 40GB EBS
- 32 Clients
 - 8 mounts per client
 - Up to 16 threads per client
 - 1 thread per directory

Metadata Performance

Scalable Metadata Performance (DNE)

Scalable Metadata Performance (DNE)

Early Conclusions

- Positives
 - Lustre performs well
 - AWS Architecture allows for scaling as needed
 - New DNE feature is a great fit
 - Fully programmable environment simplifies deployment
- Room for improvement
 - Lustre needs a more dynamic failover capability
 - Data management will be an issue
 - HSM meets S3?

