Hadoop MapReduce over Lustre®

High Performance Data Division

Ombkar Kulkarni
April 16, 2013

* Other names and brands may be claimed as the property of others.



Agenda

= Hadoop Intro
= Why run Hadoop on Lustre?
= Optimizing Hadoop for Lustre

= Performance

What’s next?

Intel® High Performance Data Division

hpdd-info@intel.com

intel'




A Little Intro of Hadoop

= Open source MapReduce framework for data-intensive computing
= Simple programming model — two functions: Map and Reduce
= Map: Transforms input into a list of key value pairs

— Map(D) - List[Ki, Vi]

= Reduce: Given a key and all associated values, produces result in the
form of a list of values

— Reduce(Ki, List[Vi]) = List[Vo]

= Parallelism hidden by framework

— Highly scalable: can be applied to large datasets (Big Data) and run on
commodity clusters

= Comes with its own user-space distributed file system (HDFS) based
on the local storage of cluster nodes

Intel® High Performance Data Division hpdd-info@intel.com intel




A Little Intro of Hadoop (cont.)

Input Split

Input Split

Input Split

" Framework handles most of the execution

= Splits input logically and feeds mappers

= Partitions and sorts map outputs (Collect)

= Transports map outputs to reducers (Shuffle)

= Merges output obtained from each mapper (Merge)

Intel® High Performance Data Division hpdd-info@intel.com

intel'




Why Hadoop with Lustre?

HPC moving towards Exascale. Simulations will only get bigger
Need tools to run analyses on resulting massive datasets

Natural allies:
— Hadoop is the most popular software stack for big data analytics
— Lustre is the file system of choice for most HPC clusters

Easier to manage a single storage platform
— No data transfer overhead for staging inputs and extracting results
— No need to partition storage into HPC (Lustre) and Analytics (HDFS)

Also, HDFS expects nodes with locally attached disks, while most HPC
clusters have diskless compute nodes with a separate storage cluster

Intel® High Performance Data Division hpdd-info@intel.com intel




How to make them cooperate?

= Hadoop uses pluggable extensions to work
with different file system types

org.apache.hadoop.fs

= Lustre is POSIX compliant:

— Use Hadoop’s built-in LocalFileSystem class PUEE BT
— Uses native file system support in Java T
= Extend and override default behavior:
LustreFileSystem RawLocalFileSystem
— Defines new URL scheme for Lustre — lustre:///
— Controls Lustre striping info T

— Resolves absolute paths to user-defined
directory

— Leaves room for future enhancements

= Allow Hadoop to find it in config files

Intel® High Performance Data Division hpdd-info@intel.com intel




Sort, Shuffle & Merge

M = Number of Maps, R > Number of Reduces

Map output records (Key-Value pairs) organized into R partitions
Partitions exist in memory. Records within a partition are sorted

A background thread monitors the buffer, spills to disk if full

Each spill generates a spill file and a corresponding index file
Eventually, all spill files are merged (partition-wise) into a single file
Final index is file created containing R index records

Index Record = [Offset, Compressed Length, Original Length]

A Servlet extracts partitions and streams to reducers over HTTP

Reducer merges all M streams on disk or in memory before reducing

Intel® High Performance Data Division hpdd-info@intel.com intel




Sort, Shuffle & Merge (Cont.)

Mapper X TaskTracker Reducer Y

O
Copy .
adilce
Servlet

\ /

Intel® High Performance Data Division hpdd-info@intel.com



Optimized Shuffle for Lustre

= Why? Biggest (but inevitable) bottleneck — bad performance on
Lustre!

= How? Shared File System — HTTP transport is redundant

= How would reducers access map outputs?

— First Method: Let reducers read partitions from map outputs directly
e But, index information still needed

— Either, let reducers read index files, as well
e Results in (M*R) small (24 bytes/record) IO operations

— Or, let Servlet convey index information to reducer
e Advantage: Read entire index file at once, and cache it
e Disadvantage: Seeking partition offsets + HTTP latency

— Second Method: Let mappers put each partition in a separate file
o Three birds with one stone: No index files, no disk seeks, no HTTP

Intel® High Performance Data Division hpdd-info@intel.com intel




Optimized Shuffle for Lustre (Cont.)

Mapper X Reducer Y

Intel® High Performance Data Division hpdd-info@intel.com




Performance Tests

= Standard Hadoop benchmarks were run on the Rosso cluster

= Configuration — Hadoop (Intel Distro v1.0.3):
— 8 nodes, 2 SATA disks per node (used only for HDFS)
— One with dual configuration, i.e. master and slave

= Configuration — Lustre (v2.3.0):
— 4 0SS nodes, 4 SATA disks per node (OSTs)
— 1 MDS, 4GB SSD MDT
— All storage handled by Lustre, local disks not used

Intel® High Performance Data Division hpdd-info@intel.com




TestDFSIO Benchmark

= Tests the raw performance of a file system
= Write and read very large files (35G each) in parallel
= One mapper per file. Single reducer to collect stats

= Embarrassingly parallel, does not test shuffle & sort

100
Throughput g ®HDFS S
Eﬁ'lesize Lustre
[_, ] 60 -
Etlme
MB/s 40 —

More is 20 ——
better!

0 il il
Write Read

Intel® High Performance Data Division hpdd-info@intel.com

intel'




Terasort Benchmark

= Distributed sort: The primary Map-Reduce primitive

= Sort a 1 Billion records, i.e. approximately 100G
— Record: Randomly generated 10 byte key + 90 bytes garbage data

= Terasort only supplies a custom partitioner for keys, the rest is just
default map-reduce behavior.

= Block Size: 128M, Maps: 752 @ 4/node, Reduces: 16 @ 2/node

Lustre ®"HDFS

Lustre 10-15%

Faster

0 100 200 300 400 500
Runtime (seconds) Less is better!

Intel® High Performance Data Division hpdd-info@intel.com intel




Work in progress

= Planned so far
— More exhaustive testing needed
— Test at scale: Verify that large scale jobs don’t throttle MDS

— Port to IDH 3.x (Hadoop 2.x): New architecture, More decoupled
— Scenarios with other tools in the Hadoop Stack: Hive, HBase, etc.

= Further Work
— Experiment with caching
— Scheduling Enhancements
— Exploiting Locality

Intel® High Performance Data Division hpdd-info@intel.com intel







