

Shinji Sumimoto, Oleg Drokin

Fujitsu/Intel

Apr.18 2013 LUG2013@San Diego

Fujitsu’s Contributions to

Lustre 2.x Roadmaps with Intel

Copyright 2013 FUJITSU LIMITED

Outline of This Talk

FEFS* and FEFS extension overview

Contribution of FEFS extension to Lustre 2.x

Current Status and Schedule

Discussion of Selected items (By Oleg Drokin)

Copyright 2013 FUJITSU LIMITED 1

*: "FUJITSU Software FEFS"

Overview of FEFS

 Goals: To realize World Top Class Capacity and Performance
File system 100PB, 1TB/s

 Based on Lustre File System with several extensions

 Introducing Layered File system for each file layer
characteristics

 Temporary Fast Scratch FS(Local) and Permanent Shared FS(Global)

 Staging Function which transfers between Local FS and Global FS
is controlled by Batch Scheduler

File

Server

File

Cluster File System

FEFS

Local File System

(work temporary)

Global File System

(data permanent)
S

ta
g
in

g
 For Performance

For Easy Use

For Capacity and
Reliability

File

Server

Local File System

File

Server

Global File System

Layered File System of

FEFS for FX10
Copyright 2013 FUJITSU LIMITED 2

Lustre Specification and Goal of FEFS

Features Current
Lustre

Our 2012
Goals

System
Limits

Max file system size

Max file size

Max #files

Max OST size

Max stripe count

Max ACL entries

64PB

320TB

4G

16TB

160

32

100PB (8EB)

1PB (8EB)

32G (8E)

100TB (1PB)

20k

8,191

Node
Scalability

Max #OSSs

Max #OSTs

Max #Clients

1,020

8,150

128K

20k

20k

1M

Block Size of ldiskfs
 (Backend File System)

4KB ~512KB

These were contributed to OpenSFS: 2/2011

Copyright 2013 FUJITSU LIMITED 3

 We have extended several Lustre specifications and functions

Lustre Functions

Extended Functions Extended New Reuse

File distribution

Parallel IO

Client Caches

NFS export

Scalability

Communication

Reliablity
Interoperability

For Operation

High Performance

Functions

Tofu Support

Max # of Clients

512KB Blocks

IB/GbE

LNET Routing

Max # of Files

Max File Size

Max # of Stripes

Extended Spec.

IO Zoning

Server Cache

IO BW Cont.

Journaling/fsck

Auto. Recovery RAS
Existing-Lustre

Lustre Extension of FEFS

MDS response

QoS

Directory Quota

ACL

Dyn. Config
Changes

Disk Quota

OS Noise Reduction

IB Multi-rail

Copyright 2013 FUJITSU LIMITED 4

2011/11: Press Release at SC11

Copyright 2013 FUJITSU LIMITED 5

Fujitsu’s Contribution work with Intel to

Lustre 2.x Roadmaps

Copyright 2013 FUJITSU LIMITED 6

Period Phase Topics

2011/12

– 2012/3
Selection of Fujitsu’s

Extensions to Lustre 2.x by Intel
20 of 60 items selected

2012/4

– 2012/6
Making Proposals by Intel Three Phase Proposal

2012/9

– 2013/3 First Phase
Architecture Interoperability,

LNET and OS Jitter update

2013/4

– 2013/9
Second Phase Memory Management

2013/10

– 2014/3 Third Phase
Large Scale Performance,

OST management

20 Selected Fujitsu Extensions to Lustre 2.x

Copyright 2013 FUJITSU LIMITED 7

No Subproject / Milestone Category Phase
1 LNET Networks Hashing Performance 1
2 LNET Router Priorities RAS 1
3 LNET: Read Routing List From File Large Scale 1
4 Optional /proc Stats Per Subsystem Memory Reduction 2
5 Sparse OST Indexing Sparse OST 3
6 New Layout Type to Specify All Desired OSTs OST selection 3
7 Reduce Unnecessary MDS Data Transfer Meta Performance 3
8 Open/Replay Handling Memory Reduction 2
9 Add Reformatted OST at Specific Index OST Dynamic Addition 3

10 Empty OST Removal with Quota Release OST Dynamic Removal 3
11 Limit Lustre Memory Usage Memory Limit 2
12 Increase Max obddev and client Counts Large Scale 4orF
13 Fix when Converting from WR to RD Lock Bug Fixes (fcntl) 4orF
14 Reduce ldlm_poold Execution Time OS Jitter 1
15 Ability to Disable Pinging OS Jitter 1
16 Opcode Time Execution Histogram For Debug 4orF
17 Endianness Fixes Architecture Inter-op. 1
18 OSC Request Pool Disabling Memory Reduction 2
19 Pinned Pages Waiting for Commit Memory Reduction 2
20 Errno Translation Tables Architecture Inter-op 1

Current Schedule

 Already started with Intel applying FEFS extension to Lustre 2,
and will plan to finish by mid FY2015

Copyright 2013 FUJITSU LIMITED 8

FY2012 FY2013 FY2014
Q3 Q4 Q1 Q2 Q3 Q4

Basic Extension: Large Scale. Jitter Elimination, etc.

Q1 Q2 Q3 Q4
FY2015
Q1 Q2 Q3 Q4

STEP-1 STEP-2 STEP-3 STEP-4 STEP-5 and next

Lustre 2.6▽ Lustre 2.4 ▽ Lustre
Release

Intel/Fujitsu
(Whamcloud)

Lustre 2.8▽

Lustre 2.7▽ Lustre 2.5▽ Lustre 2.9▽

 Copyright 2013 FUJITSU LIMITED Copyright 2011 FUJITSU LIMITED 9 Copyright 2010 FUJITSU LIMITED 9 9

Fujitsu Contributions to Lustre*
High Performance Data Division

 Oleg Drokin

April 16, 2013

Intel® High Performance Data Division

* Other names and brands may be claimed as the property of others.

2 Intel® High Performance Data Division hpdd-info@intel.com

Network jitter: Doing away with pings

 On large systems pings are expensive:
– Clients * targets pings every obd_timeout/4 interval (default 25 sec)

 Main purposes of pinging:
– Lets clients detect restarted/recovering servers in reasonable time

– Proactively weeds out unreachable/dead clients

 With Imperative Recovery we’ve got #1 covered

 Many existing systems already know about dead clients from
cluster management tools
– Lustre provides a way for those systems to tell it about dead clients for

immediate eviction

 Now servers have a way to tell clients to avoid idle pinging
2

3 Intel® High Performance Data Division hpdd-info@intel.com

Lnet routes hashtable

 It was noticed that Lnet stores routing entries in a single linked
list

 As number of routes increases on large systems, iterating the
list becomes more and more expensive

 Hash table is a pretty natural solution to this problem

3

4 Intel® High Performance Data Division hpdd-info@intel.com

Limiting OS jitter – ldlm poold

 On FS with 2000 OSTs ldlm_poold was using 2ms of cpu every
second on every client
– Investigations revealed it was walking a linked list of all ldlm namespaces

(one per connected service) every second to update lock stats

 The lock statistics on empty namespaces do not change
– So no need to walk empty namespaces at all

 An updating action is performed every 10 seconds on clients
– So no need to wake up every second, just see how much time left till

next action and sleep this much

 A lot of the calculations don’t need to be periodic and could be
predicted, making ldlm_poold pointless (TBD)

4

5 Intel® High Performance Data Division hpdd-info@intel.com

SPARC* architecture support

 SPARC architecture is big-endian
– Fujitsu performed a full Lustre* source audit for endianness issues and

contributed the results back to the community

 SPARC Linux has “different” error numbers (Solaris* compatible)

– This highlights a bigger problem of assuming the error numbers being
compatible on different nodes in network which is not true.

– Fujitsu came with an errno translation table solution that it contributed
back to community

• Intel is working on integrating this solution into 2.x releases

 Fujitsu also contributed access to a SPARC system test cluster

5

6 Intel® High Performance Data Division hpdd-info@intel.com

Memory usage improvements

 /proc statistics on clients tends to use a lot of RAM
– Esp. if you have thousands of targets connected, it could use hundreds of

megabytes

 Fujitsu developed and contributed a way to disable such
statistic tracking
– Being adopted by Intel for inclusion into Lustre 2.x

6

7 Intel® High Performance Data Division hpdd-info@intel.com

More fine-grained control of striping

 Current Lustre striping of “starting at X, Y wide” is not always
adequate

 Fujitsu developed and contributed code to allow very-fine-
grained stripe allocation on per-OST basis
– This is currently being adopted by Intel into inclusion into Lustre 2.x

 Additionally, assumption about contiguous OST numbering is
also removed which would allow for flexible OST-numbering
schemes

7

