Advancing Digital Storage Innovation

Improvements in Lustre Data Integrity

Nathan Rutman

Friday, April 20, 12

mailto:Nathan_Rutman@xyratex.com
mailto:Nathan_Rutman@xyratex.com

Topics

*Lustre Wire Checksum Improvements
—Cleanup
—Portability
—Algorithms
—Performance

*End-to-End Data Integrity
—T10DIF/DIX
—\Version Mirroring

5 Xyratex-

Friday, April 20, 12

Goals

End user assurance that their data was written to disk
accurately

*Protection against all RAID (single) failure modes
*Offload the heavy calculations from the servers
*Support a wider range of client/server hardware

3

Friday, April 20, 12

Over-the-Wire Bulk Checksums

4 XxXyratex-

Friday, April 20, 12

Bulk Checksum History

*Initially only software CRC-32 (IEEE, ANSI) 2007
*Adler-32 added in 1.6.5

—easy to calculate
—weak for small message sizes

*Shuichi Ihara added initial support for hardware CRC-32C
(Castagnoli)

—Intel Nehalem
—bz 23549, landed in Lustre 2.2

*\WWC added multi-threaded ptlrpcd, and bulk RPC checksums
moved into ptlrpcd context: parallelized checksums
—LU-884, LU-1019, in Lustre 2.2

*sptlrpc implementation used a different set of functions
—~CRC-32, Adler, MD5, SHA1-512

5

Friday, April 20, 12

Bulk Checksum Changes

*Cleanup of sptlrpc and bulk checksum algorithms to use the
kernel crypto hash library

—simplifies future additions
—-LU-1201

* Addition of Software CRC-32C support

—eg. if server has HW support and clients don't
—LU-1201

*Implementation of Hardware CRC-32 using PCLMULQDQ

—Intel Westmere
—~MRP-314, still testing

6

Friday, April 20, 12

Bulk Checksum Speeds, MB/s

B sw
Zlib IEEE 802.3 ISCSI
rsync ANSI X3.66 Btrfs 3000
gzip bzip2
mpeg2 png
i} 2250
1500
750
A 0

Adler CRC-32 CRC-32C

. Xyratex-

Friday, April 20, 12

End-to-End Data Integrity with T10 and Version
Mirroring

3 XxXyratex-

Friday, April 20, 12

110 DIF

0 512 514 516 519
512 bytes of data GRD | APP REF

16-bit guard tag (CRC of 512-byte data portion) — |

16-bit application tag

32-bit reference tag

8 bytes of Pl appended to 512 byte sectors
HBA and disk drives must support T10-DIF in hardware

9

Friday, April 20, 12

110 DIF

(Application)
(0)
(HBA)

(Disk drive)

10

Friday, April 20, 12

Byte stream

512 byte sector

HBA

calculates all PJ

912 byte sector

GRD

APP

REF

512 byte sector

GKAPP

v

—N-V-F Ot C X

T10 DIX

User app or OS
generates GRD

Byte stream \ %
512 byte sector G
APP REF

v
Y%

(Application)
(0)
(HBA)

(Disk drive)

APP | REF

Xia-0iLl + 41@-0Ll1

512 byte sector G

512 byte sector /% G

HBA merges data
and Pl scatterlists

1 —N-V-F Ot C X

Friday, April 20, 12

T10 DIX with Lustre

(oss)
(osT)

(MDRAID)

(HBA)

(Disk drive)

Byte stream

GRD

512 byte sector

512 byte sector

0Ll YHM pu3z-0j-puz azsn

512 byte sector GRD REF
512 byte sector GRD | APP REF
512 byte sector GKAPP REF

912 byte sector

12

Friday, April 20, 12

Changes to Lustre

* Additional checksum data described or carried in brw
RPC

*Add Pl and checking to data path

For mmap’ed pages, early GRD failure implies data has
changed, recompute from OSC

*Disable bulk checksums

*Optional GRD checking on OSS can push all checksum
load to HBA/disk hardware

13 —N-V-F Ot C X

Friday, April 20, 12

RAID failure modes

oParity Lost and Parity Regained - Andrew Krioukov
Latent Sector (reliable read) errors

*Data Corruption

*Misdirected Writes

*Lost Writes

* Torn Writes

Parity Pollution

*Outcomes
—Data recovery
—Data loss (detected)
—Data corruption (silent)

14 —N-V-F Ot C X

Friday, April 20, 12

RAID with Version Mirroring

cksum(C)

A B
GRD cksum(A) cksum(B)
APP VerO VerO

VerO

*RAID stripe across disks
*Block (chunk) on one disk
*Multiple sectors per block

e i
N— A

P(ABC)
cksum(P)
0,0,0

«Store block version in T10 APP field
—sectors within a chunk store the same version
—parity block contains version vector

15

Friday, April 20, 12

Rebuild with Version Mirroring

Update C to C’, write C’ and P(ABC’)

—
e

~" Tl
N —

—
R

~" il
N —

A

B

cksum(A)

cksum(B)

VerQ

VerQ

S~

=

cksum(C)

Ve r(/)\

W:’Wrﬁ%

Later, attempt to update Ato A

First, read B & C to prepare for constructing new P

But first read P to verify versions before writing P(ABC’)
Version mismatch, latest is in P, so reconstruct C’ from P

C = PABC)® A @ B

Write C’
Calculate P(ABC’)
Write A" and P(A'BC’)

.

Friday, April 20, 12

RAID failure modes

Latent Sector (reliable read) errors - drive detects
-Data Corruption - GRD, lightweight, partial reads
*Misdirected Writes - REF

*Lost Writes - parity block version vector

* Torn Writes - sector versions

*Parity Pollution - GRD + versions allow safe
reconstruction

17 —N-V-F Ot C X

Friday, April 20, 12

Fin

18

Friday, April 20, 12

