
Intel® Dynamic LNet Configuration

Amir Shehata

8 April 2014

Dynamic LNet Configuration

Overview

•  Purpose

•  What can it do?

•  What doesn’t it do?

•  Parameter Configuration

•  C Configuration API

* Some names and brands may be claimed as the property of others.

2

Purpose

•  Dynamically modifying LNet configuration capability is being built
into the LNet module and will be landed in 2.7

•  DLC aims at easing the process of fine tuning LNet without
having to restart the LNet Kernel modules. IE Configuration
parameters are changed on a fully running system.

•  Streamlines setting and optimizing LNet parameters

•  DLC makes configuration of key LNet parameters easier and
more flexible

3

What can it do?

•  Adding/Deleting networks

•  Adding/Deleting routes

•  Configuring router buffer pools

•  Enabling/Disabling routing.

•  Showing routing information

•  Importing/exporting configuration in YAML format

4

What doesn’t it do?

•  For the first version of DLC, the most used parameters were
picked to be configured dynamically.

•  Currently DLC doesn’t configure some of the LND parameters
•  Ex: map_on_demand

•  Other examples of parameters not currently supported are:
•  Check_routers_before_use

•  avoid_asym_router_failure

•  dead_router_check_interval

5

Parameter Configuration

•  DLC Provides two ways of configuring LNet parameters
•  Via a Command Line tool, lnetctl

•  Via a C API

6

Block Diagram

7

Adding Networks

From lnetctl:
net add: add a network
 --net: net name (ex tcp0)
 --if: physical interface (ex eth0)
 --peer-timeout: time to wait before declaring a peer dead
 --peer-credits: define the max number of inflight messages
 --peer-buffer-credits: the number of buffer credits per peer
 --credits: Network Interface credits
 --cpts: CPU Partitions configured net uses

Ex:

lnetctl net add –net tcp0 –if eth0 –peer-timeout 180 –peer-credits 8
--credits 1024

8

Removing Networks

From lnetctl:
net del: delete a network
 --net: net name (ex tcp0)

Ex:

lnetctl net del –net tcp0

9

Showing Networks

From lnetctl:
net show: show networks
 --net: net name (ex tcp0) to filter on
 --detail: display detailed output per network

Ex:
show all the networks
lnetctl net show
show all the networks in detail
lnetctl net show –detail
show a specific network
lnetctl net show –net tcp0
#show a specific network in detail
lnetctl net show –net tcp 0 –detail

10

Show network sample output

•  All show output is in YAML format
net:
 - nid: 0@lo
 status: up
 tunables:
 peer_timeout: 0
 peer_credits: 0
 peer_buffer_credits: 0
 credits: 0
 - nid: 192.168.205.130@tcp1
 status: up
 interfaces:
 0: eth3
 tunables:
 peer_timeout: 180
 peer_credits: 8
 peer_buffer_credits: 0
 credits: 256

11

Adding Routes

From lnetctl:
route add: add a route
 --net: net name (ex tcp0)
 --gateway: gateway nid (ex 10.1.1.2@tcp)
 --hop: number to final destination (1 < hops < 255)
 --priority: priority of route (0 - highest prio

Ex:

lnetctl route add --net tcp0 --gateway 10.1.1.2@tcp1 --hop 1--priorit
0

12

Removing Routes

From lnetctl:
route del: delete a route
 --net: net name (ex tcp0)
 --gateway: gateway nid (ex 10.1.1.2@tcp)

Ex:

lnetctl route del –net tcp0 –gateway 10.1.1.2@tcp1

13

Showing routes

From lnetctl:
route show: show routes
 --net: net name (ex tcp0) to filter on
 --gateway: gateway nid (ex 10.1.1.2@tcp) to filter on
 --hop: number to final destination (1 < hops < 255) to filter on
 --priority: priority of route (0 - highest prio to filter on
 --detail: display detailed output per route

Ex:

lnetctl route show –net tcp0

14

Show route sample output - detailed

•  All show output is in YAML format

route:
 - net: tcp2
 gateway: 192.168.206.133@tcp
 hop: 1
 priority: 0
 state: up

15

Configuring Router Buffer Pools

•  Configuring router buffer pools while routing is disabled, stores
the configured values, which would take effect when routing is
enabled.

•  Disabling and enabling routing doesn’t reset router buffer pools
values.

•  Configuring router buffer pools while routing is enabled takes
effect immediately

•  Router buffer pool sizes adhere to min and max values.

16

Configuring Router Buffer Pools

From lnetctl

set tiny_buffers: set tiny routing buffers
 VALUE must be greater than 0

set small_buffers: set small routing buffers
 VALUE must be greater than 0

set large_buffers: set large routing buffers
 VALUE must be greater than 0

Ex

set tiny_buffers 1024

17

Enabling/Disabling Routing

•  Enabling and disabling the routing feature on a node can be done
dynamically

From lnetctl
set routing: enable/disable routing
 0 - disable routing
 1 - enable routing

Ex:
#enable routing
set routing 1
#disable routing
set routing 0

18

Showing routing information

•  All show output is in YAML format

routing:
 - cpt[0]:
 tiny:
 npages: 0
 nbuffers: 2048
 credits: 2048
 mincredits: 2048
 small:
 npages: 1
 nbuffers: 16384
 credits: 16384
 mincredits: 16384
 large:
 npages: 256
 nbuffers: 1024
 credits: 1024
 mincredits: 1024
 - enable: 1

19

Importing YAML configuration

•  It’s possible to import a file describing LNet configuration in YAML
format

From lnetctl

import FILE
import < FILE : import a file
 --add: add configuration
 --del: delete configuration
 --show: show configuration
 --help: display this help
If no command option is given then --add is assumed by default
Ex:
import < config.yaml # use config.yaml to add LNet configuration
import –del < config.yaml # use config.yaml to delete LNet configuration
import –show < config.yaml # use config.yaml to show LNet configuration

20

Exporting YAML configuration

•  It is possible to export LNet configuration in YAML format

From lnetctl
export FILE
export > FILE : export configuration
 --help: display this help

Ex:

export > config.yaml

21

YAML input/output example

22

net:
 - net: tcp3
 status: up
 interfaces:
 0: eth4
 tunables:
 peer_timeout: 180
 peer_credits: 8
 peer_buffer_credits: 0
 credits: 256

route:
 - net: tcp6
 gateway:
192.168.29.1@tcp
 hop: 4
 detail: 1
 seq_no: 3
 - net: tcp7
 gateway:
192.168.28.1@tcp
 hop: 9
 detail: 1
 seq_no: 4
buffer:
 - tiny: 1024
 small: 2048
 large: 4096
...

C Configuration API

•  Dynamic LNet Configuration introduces a C-library which can be used
to configure LNet parameters.

•  The library introduces two types of APIs
•  APIs to configure specific parameters
•  APIs which accept YAML input to configure a set of parameters.

•  The C-library is the underlying infrastructure used by lnetctl.
•  All APIs have an out parameter which is a YAML error block describing

the errors
•  Show APIs have an out parameter which is a YAML show block

describing the show output
•  YAML blocks can be manipulated and printed to a file stream.
•  The C-library can be used in interpreted languages such as Python,

which is useful when writing configuration scripts or possibly a front end
for configuring LNet.

23

C Configuration API – Python example

•  Created a SWIG wrapper around the C Library
•  This allows the C-API to be called from python scripts.
Ex: Configuring a network from a python script
import lustreconfigapi
rc, yaml_err = lustreconfigapi.lustre_lnet_config_net(“tcp”, “eth0”,

 180, # peer timeout
 8, # peer credits
 0, # peer buffer credits
 256, # network interface credits
 None, # CPU affinity assignment
 -1) # sequence number used to identify the transaction

print the YAML error to file
lustreconfigapi.cYAML_print_tree2file(f, yaml_err, 0)

24

C Configuration API – YAML input

•  The API provides a way to Add, Delete and show configuration
parameters via YAML input

•  The YAML input is as described above.

25

C Configuration API - Note

•  Note the YAML output from the show APIs can be fed directly into
the APIs which take YAML input to add, delete or show LNet
Parameters.

•  This allows for scenarios such as
•  querying a node for its configuration

•  storing the YAML output in a file

•  Feeding that YAML file to configure the node on restart.

•  Or possibly to configure other nodes.

26

Questions?

27

Intel Confidential — Do Not Forward

