
ROBINHOOD
POLICY ENGINE

| PAGE 1

LUSTRE USER GROUP 2013

16-18 APRIL 2013

Aurélien DEGREMONT

Thomas LEIBOVICI

CEA/DAM

ROBINHOOD: BIG PICTURE

Scan sometimes (or never), query at will

1. Fill the database

2. Apply rules

3. Query at will for:

Searches

Statistics

Actions

| PAGE 2

Parallel scan
(nightly, weekly, …) Robinhood

database

near real-time

DB update Lustre v2

ChangeLogs

find and du clones

Fine-grained statistics + web UI

Mass action scheduling (policies)

Admin

rules & policies

ANALYZING FILESYSTEM

Feeding the database
Robinhood information and actions are based upon the database data.

Robinhood supports MySQL as backend.

Database could be filled using:

Parallel filesystem scan.

- For Lustre 1.8 or any POSIX filesystem.

Reading Lustre Changelog

- For Lustre 2.x

- Only an initial scan is needed.

| PAGE 3 Lustre User Group 2013

Parallel scan
(nightly, weekly, …) Robinhood

database

near real-time

DB update Lustre v2

ChangeLogs

RBH-FIND, RBH-DU

Fast find and du clones
Query Robinhood DB instead of performing POSIX namespace scan

 faster!

> rbh-find [path] -user “foo*" -size +1G –ost 4

 20sec for 40M entries

Enhanced du :

Detailed stats (by type…)

Can filter by user

> rbh-du -sH /fs/dir -u foo --details

/fs/dir

 symlink count:30777, size:1.0M, spc_used:9.1M

 dir count:598024, size:2.4G, spc_used:2.4G

 file count:3093601, size:3.2T, spc_used:2.9T

| PAGE 4

ROBINHOOD: FINE-GRAINED STATISTICS

Usage statistics
Per user, per group, per type, …

Possibly split user usage by group

> rbh-report –u foo –S

user , group, type, count, spc_used, avg_size

foo , proj001, dir, 2, 8.00 KB, 4.00 KB

foo , gr1, dir, 74441, 291.64 MB, 4.01 KB

foo , gr1, file, 422367, 71.01 GB, 335.54 KB

foo , gr1, symlink, 1418, 1.35 MB, 46

foo , proj002, file, 2, 1.27 GB, 651.43 MB

Total: 498230 entries, 77918785024 bytes used (72.57 GB)

| PAGE 5

ROBINHOOD: FINE-GRAINED STATISTICS

Top users and groups
Sorted by volume, object count, avg file size…

> rbh-report --top-users --by-count

rank, user , spc_used, count, avg_size

 1, john , 423.23 GB, 1599881, 275.30 KB

 2, paul , 292.91 GB, 954153, 330.98 KB

 3, mike , 65.37 GB, 543169, 130.98 KB

…

Top directories
Sorted by object count, avg file size…

> rbh-report --top-dirs --by-count

rank, path, dircount, avgsize, user, group, last_mod

 1, /hpss/foo1/dir1, 24832, 2.62 GB, foo1, gr59, 2013/03/11 17:13:45

 2, /hpss/foo2/dir3, 20484, 339.88 MB, foo2, g03, 2013/02/03 06:59:05

 3, /hpss/bar2/dir4, 19484, 543.82 MB, bar2, g03, 2012/05/28 12:45:26

…

| PAGE 6

ROBINHOOD: FINE-GRAINED STATISTICS

File size profile
Global or for a given user/group:

> rbh-report –u foo –-sz-prof

user, type, count, spc_used, avg_size, 0, 1~31, 32~1K-, 1K~31K, 32K~1M-, 1M~31M, 32M~1G-, 1G~31G, 32G~1T-, +1T

foo , file, 62091, 58.50 TB, 1.09 GB, 40, 44, 233, 548, 1879, 5820, 8004, 1835, 178, 0

User, group, directories can also be sorted by the ratio of file in a given range:

> rbh-report --top-users --by-szratio=1..31M

rank, user , ratio(1..31M)

1, john , 91.30%

2, perrez , 87.64%

3, matthiew , 85.76%

4, vladimir , 78.50%

5, gino , 77.02%

…

| PAGE 7

WEB INTERFACE

Web UI

| PAGE 8

File size profile (global / per user / per group)

Usage stats (per user, per group)

ROBINHOOD POLICIES

Mass action scheduling on filesystem entries
Admin-defined rules

Build-in policies:

Purge

Directory removal

Deferred removal (undelete)

Archiving

HSM: schedule ‘archive’ and ‘release’ actions

Policy definition:

Flexible and highly customizable

Attribute-based

Using fileclass definitions

Example:

| PAGE 9

fileclass BigLogFiles {
 definition { type == file and size > 100MB
 and (path == /fs/logdir/*
 or name == *.log) }
 …
}

purge_policies {
 ignore_fileclass = my_fileclass;

 policy purge_logs {
 target_fileclass = BigLogFiles;
 condition { last_mod > 15d }
 }
}

PURGE POLICIES

Use cases

Managing file lifetime, cleaning tmp data

Cleanup after a code run (lifetime: few hours)

Cleanup after a simulation (lifetime: several months)

Clean old krb tickets, logs, core dumps, crash dumps, …

Avoid “ENOSPC” errors caused by full OSTs

Admin defines high/low OST usage thresholds

and purge policy rules

Robinhood monitors free space per OST

 Applies purge policies on OSTs that exceed high threshold

Disk space fair-share

Admin defines max usage per user or group

Robinhood monitors usage per user/group

 Applies purge policies for user/group over their limit

| PAGE 10

ENOSPC

OST

ARCHIVING POLICIES

An alternative to ‘rsync’

No need to scan each time you want to archive data

Policy-driven:

Can skip some kind of files

Can control the delay before archiving a file

Fine control of copy streams:

number of simultaneous copies in parallel

max files/hour, max volume/hour

Robinhood detects file modification and maintains file status in its DB

report available with current status of files (new/archived/modified…)

Allows undelete
Removed files in Lustre are not immediately removed in backup space

 Configurable delay before cleaning the backup copy

Can undelete a file during this delay

| PAGE 11

Archived data

New data

ROBINHOOD AND LUSTRE-HSM

Lustre-HSM support
Archiving policies to schedule copy from Lustre to the HSM

Purge policies to release disk space in Lustre OSTs when needed

(file remains visible in Lustre for users)

GC of deleted files

Undelete

Disaster recovery: to rebuild a Lustre filesystem from the archive

Aware of ‘HSM’ specific changelog records:

To keep track of file status

| PAGE 12

WORK IN PROGRESS

MDS disaster recovery
Scenario:

1) Restore MDT snapshot

2) Replay changes between snapshot and disaster (rbh-diff / rbh-apply)

New policies
Rebalance files between OSTs / migrate files between OST pools

Generic policies to schedule any kind of action, e.g.

Datascrubbing (to detect silent corruption)

MD scrubbing (FS consistency check)

Run any command on FS entries…

| PAGE 13

MDT

snapshot

(dd…)

changes

changelogs

MDT disaster

FUTURE WORK

Distributed database
For now: 1 single MySQL database

Need to distribute the database:

To handle higher MD rate (DNE)

To manage xx billions of entries

Turn it to a framework
API to extract customized reports

All components as dynamic customizable modules:

Policy criteria

Policies

Stats

Filesystem backend, DB backend…

| PAGE 14 Lustre User Group 2013

ROBINHOOD WEBSITE & SUPPORT

Last release: robinhood 2.4.2

Project home: http://robinhood.sourceforge.net

Mailing lists:

robinhood-news@lists.sourceforge.net

robinhood-support@lists.sourceforge.net

robinhood-devel@lists.sourceforge.net

| PAGE 15

http://robinhood.sourceforge.net/
mailto:robinhood-news@lists.sourceforge.net
mailto:robinhood-news@lists.sourceforge.net
mailto:robinhood-news@lists.sourceforge.net
mailto:robinhood-support@lists.sourceforge.net
mailto:robinhood-support@lists.sourceforge.net
mailto:robinhood-support@lists.sourceforge.net
mailto:robinhood-devel@lists.sourceforge.net
mailto:robinhood-devel@lists.sourceforge.net
mailto:robinhood-devel@lists.sourceforge.net

