LFSCK

High Performance Data Division

Alexey Zhuravlev
April 17, 2013

* Other names and brands may be claimed as the property of others.

LFSCK: before

» |fsck databases created via e2fsck
— not suitable for ZFS, btrfs, ...
— very slow due to large database size
— need network storage or database copy

= complex to keep in sync with Lustre* code

* not very useful for large file systems

Intel® High Performance Data Division Intel® Confidential |ntel

LFSCK: online Lustre File System Checker

" The need in LFSCK is driven by:
— Lustre isn’t free of bugs, some may lead to on-disk inconsistency
— Same for hardware

— New features may require new on-disk format
e Backup/restore isn’t an option in many cases

" The checks should be running online:
— The clusters grow quickly: in files, byte and in nodes
— The checks can take a lot of time, even being run exclusively

e [fsck can take weeks on large file system
— Waiting for an error is not very wise

e |t’'s better to rescue data proactively, so they’re ready for the users

— Should not affect visible performance much (unless required)

Intel® High Performance Data Division Intel® Confidential |nte|

Changes on-disk since 1.8: Ol — Object Index

Maps FIDs to local IDs (inode, dnode)
— FID is Lustre Unique File ID

= Every specific OSD implements own Ol internally
— Every OSD hides details of underlying filesystem (Idiskfs, ZFS, btrfs)

Correct Ol is vital for Lustre to behave properly

= 2.X supports old inode/generation IDs in compatibility mode,
but the functionality is limited
— Subset of FIDs (IGIFs) is reserved to map FIDs to inodes directly
— Can be used only with existing setups
— IGIF can’t be created with 2.X

Intel® High Performance Data Division Intel® Confidential |nte|

Ol: what and how to fix

= Missing FIDs and Ol in 1.8 in case of upgrade to 2.x
— To enable new features like path2fid

Stale Ol in case of file level backup/restore on MDS

— Restore does not put files in the same inodes
* Errors introduced by bugs/issues with software/hardware

= Since 2.x every object has LMA attribute
— Storing object’s FID

= Collection of LMA is reverse Ol
— Can be used to verify and fix Ol

Intel® High Performance Data Division Intel® Confidential |ntel

Changes on-disk since 1.8: FIDs in directories

We do store local object IDs (inode, dnode) in directory entries
— To preserve on-disk compatibility with local file system
— E.g. you can still mount with —t ldiskfs, use fsck.extN, etc

READDIR returns <name; object id; type> triples

= We could get FID from LMA stored in object
— But this is extra seek and 10 to get local object — performance penalty

We need both FID and local ID in the entries

— To preserve compatibility and performance

filename type ino | FID

Intel® High Performance Data Division Intel® Confidential |nte|

FIDs in directories: use cases

1.8 file systems do not have FIDs in directory entries

Need to upgrade the entries if upgraded to 2.X

FIDs in directories are lost after file level backup/restore

= Better to be done online

On the access from the clients

Intel® High Performance Data Division Intel® Confidential (|ntel

Changes on-disk since 1.8: LinkEA

Directory entry Directory entry

Dir A Bgis/.® "foo" | inode m

Dir B Bgi®l=® "bar" | inode m

A

.

nlink=2 '
LinkEA

= Extended attribute for every file/directory
= Helps to find path name to object with specific FID
" |ntroduced in 2.0 with limits, mandatory since 2.4

= Requires stable FIDs

Intel® High Performance Data Division Intel® Confidential |ntel

LinkEA: what and how to fix

* Missing LinkEA after upgrade from 1.8
= Software/hardware issues

= Scan a directory, verify every name is presented in LinkEA

Trust visible namespace over LinkEA

Files with multiple names (hardlinks) need special handling
— Build an index listing objects with many names
— Remove object from the list once all the referenced verified
— One more scan for the objects remaining in the list
— Supposed to be small usually — the case is relatively rare

Intel® High Performance Data Division Intel® Confidential |ntel

Lots of different checks: fits together

= Few totally independent scanners could be implemented
— One to check Ol
— Another to check LinkEA
— Yet another to repair/rebuild FIDs in directories

= Not very efficient from I/O throughput perspective

" Implemented like a pipe
— Two independent scanners

— Same set of objects
— Data is fetched once

Intel® High Performance Data Division Intel® Confidential |ntel

Piped LFSCK Processing

Working set

Namespace 0]

Inode table

Intel® High Performance Data Division Intel® Confidential ‘ lntel

Create speed (x Kfiles/sec)

Performance

55

50

45

40

35

30

25

Create performance with Ol file(s) rebuilding

47.661

1.146
.799

0 1 2 4 8 16 32 64
Ol files in rebuilding

Intel® High Performance Data Division

Create speed (x Kfiles/sec)

55

50

45

40

35

30

25

Create performance with non-urgent Ol
scrub

T

0 1 2 3 4 5 10 15 20 -1
Ol scrub speed limit (x Kfiles/sec)

Intel® Confidential

Next step: LFSCK 2

= Consistency between MDS and OST
— Missing OST objects
— Lost OST objects
— OST objects referenced by few files

* The architecture and the design are ready

Intel® High Performance Data Division Intel® Confidential |ntel

Yes another step: LFSCK 3

= New set of inconsistencies with DNE
— Name pointing onto non-existing objects
— Lost files and directories

Vital to DNE phase 2

— The plan B for the cases we might miss in the design

— Good option for setups where metadata performance is very important
and reboots are rare

= Online

" The scope can be restricted to set of objects

— No need to scan through all objects: just one affected by recent
distributed operations

Intel® High Performance Data Division Intel® Confidential |ntel

LFSCK and ZFS

ZFS is almost first class citizen backend
— Declared OSS on ZFS support in 2.3, Fully functional in 2.4

* No need to upgrade on-disk format
— Features like LinkEA, FID-in-dirent supported from the beginning

= Less need in Ol scrubber
— ZFS has own mechanism to maintain consistency

" Object Iterator is still needed
— To implement LFSCK 2 and LFSCK 3 — distributed cases

= Provides the bookmark mechanism to walk through a tree
— We need to export it with OSD API

Intel® High Performance Data Division Intel® Confidential |ntel

