
Lustre® at Blue Waters

LUG 2013

Nathan Rutman (nathan_rutman@xyratex.com)

• 2007 - University of Illinois and NCSA select IBM to
build Blue Waters, plan for 1 petaflop by end of 2012

• Aug 2011 - IBM withdraws, project was "more complex
and required significantly increased financial and
technical support"

• Nov 2011 - NSF approves NCSA's Cray-based

History

Nov 2011 - NSF approves NCSA's Cray-based
deployment of Blue Waters

• July 2012 - Cray builds and installs system in 9
months, begin software/hardware scaling work

• Nov 2012 - Full system available for NSF research

• Compute

o 237 Cray XE6 cabinets

o 32 Cray XK7 cabinets

o 25766 clients

o 1.5 PB memory

o sustained petaflop computing

11.6 PF peak

Stats

o 11.6 PF peak

• Storage

o 25 PB Lustre storage on Sonexion hardware

o 1.1 TB/s total

o 22 PB scratch

o 1.0 TB/s /scratch

• 3 Filesystems

o home

o project

o scratch

� 360 OSSs, 1440 OSTs

• Rack

o 6 SSU's / 12 OSS's

o Top-of-rack IB switch

Storage

• SSU

o 2 OSS's in active/active pair

o 4 OSTs per OSS

o Each OST is MDRAID 6 8+2

o 82 7.2K fatsas 2TB drives

• MDS

o 72-drive RAID 10 300GB 15K

o 128 GB, 32 cores

• Gemini 3D torus

• Fine-grained routing from clients to Cray Gemini-IB
LNET routers

• Top-of-rack IB switch in each Sonexion rack

• TOR switches connected to Cray routers

o 16 LNET routers : 12 OSSs to match router throughput

Network

o 16 LNET routers : 12 OSSs to match router throughput

• 2 Cray routers per FS for MDS traffic, connected to
Director-class core switch

• Core switch connected to each TOR

• Lustre 2.1 servers

o diskless boot from mgmt node

• Lustre 1.8.7 clients

• First large-scale Lustre 2.1 deployment

Software

• 99% availability

• Full component redundancy

• Redundant path analysis for each component (mgmt
node, controller, SSU, rack, MDS, etc.)

Reliability

• HA timings

o fsck

• Fine-grained routing

o large routing tables

• fcntl(F_UNLCK) failure

o 1.8-2.1 compat

• Block bitmap reads

Early scaling

• MDS problems

o high CPU

o "sluggishness"

o all MDS threads stuck

o "pulsing"

o cascading client timeouts

o infinite recovery loops

• Confluence of many factors

o Memory allocation race

o Inaccurate thread accounting

o Blocking callback behavior in the face of filled network

buffers

o Poor utilization of existing buffers

MDS behavior

• Details presented in Paris at LAD '12

• ...but I'll talk about three of them anyhow.

• Memory Allocation race (MRP-633)

• Non-visibility of buffer usage (MRP-644)

• Inaccurate "queued" accounting (MRP-622)

• Bad thread accounting

o Mishandled srv_hpreq_ratio (MRP-661, LU-1963)

o Missing OOM-killed thread accounting (MRP-648)

Number of HP threads (MRP-664)

Problems and Solutions

o Number of HP threads (MRP-664)

• ELC on MDS threads (MRP-655)

• Cancel retries (MRP-477)

• Request buffer size (MRP-670)

• Nonblocking lock callbacks (MRP-663)

• LNET issues

o Router buffer sizing

o Network Priority

o Unavailable router passthrough (MRP-658)

• Sometimes we see all server threads blocked on lock

callback

• Some reasons:

1. blocking callback never gets sent

2. router drops bl callback

3. client doesn't correctly cancel

Threads Blocking on Locks

4. cancel gets lost in network

5. router drops cancel

6. cancel response takes too long to reach mds

7. backed up on router

8. queued on mds

• Only the HP thread is left

• Symptoms

o no rpc processing

o no disk activity

o high cpu load

o sluggish MDS console response

• What's happening

o rqbd buffers fill with incoming reqs

Memory allocation race

o rqbd buffers fill with incoming reqs

o each thread sees bufs are below low-water, spinlock to create
more

o threads start to race, bogging down all cpus

• What should we do?

o if anyone else is in the middle of allocating, skip it.

• Results

o no more sluggishness, but the MDS can't keep up with
incoming request rate

We assume buffers are being created, but hard to see.

(stat's req_qdepth was really just req_in's)

mdt.snx11003-MDT0000.mdt.req_buffer_stats=

network buffers:

created: 106496

available: 1723

idle: 0

Request buffers

idle: 0

history: 0

max allowed: 610801

size: 113386

total memory used: 11515 MB

requests:

active: 1022

hp active: 0

incoming: 0

queued: 103751

• Symptoms

o created - avail = active + queued

o So 1:1 buffers to rpc's

• What's happening

o srv_max_req_size = MDS_MAXREQSIZE + 1024 =113kB

o srv_buf_size = MDS_MAXREQSIZE + 1024

We must have enough remaining space in a buffer to accept a

Request buffer size

o We must have enough remaining space in a buffer to accept a
srv_max_req_size for LNET to accept it.

o So we can only have a single req per rqbd.

• What should we do?

o If we doubled the buffer size and the average message size is
4k, we could put 113k/4k = 25 messages before the "last" one.

• Results

o Actual message size ~1.4kB average

mdt.snx11003-MDT0000.mdt.req_buffer_stats=

network buffers:

created: 2048

available: 1884

idle: 0

Request buffer size (con't)

history: 0

max allowed: 305400

size: 226772

total memory used: 442 MB

requests:

active: 510

hp active: 0

incoming: 0

queued: 24998

• Fine-grained routing - solid

• I/O data path - solid

• MD handling path - solid

• ptlrpc request handling code - shakier than we would
like

• lock callback code - not robust against req handling

Conclusions

• lock callback code - not robust against req handling

• Lustre 2.1 at scale -- solid now on BW

• For any large deployment -- be prepared to do some
work!

• Lustre success vs GPFS failure

Thank YouThank You

nathan_rutman@xyratex.com

