
Lustre® Contribution Model:
Community Development

LUG 2013
Nathan Rutman (nathan_rutman@xyratex.com)

• Why we need a single Lustre tree

• Why we need custom Lustre distributions

• Code development and integration process

• Testing

• Code reunification

Topics

• Different environments = different bugs

• Different priorities = different bug fixes / features

• Testing depth

• We all share the rewards

Why we need a single Lustre tree

• Different environments = different bugs

• Different priorities = different bug fixes / features

• Some features are hardware-dependent (or not "core Lustre")

o Hardware CRCs

o MDRAID zero-copy

o Samba re-export

Tuning for scale

Why we need a custom Lustre distribution

o Tuning for scale

• External gatekeeper

o Short I/O

o Pin ldiskfs block bitmaps

• Stability

• Rapid turnaround

• Customer bugs

• Sales support

• Future product plans

• Internal feature backlog

• Performance

Priorities

• Work divided by teams to avoid "crisis mode"

o Sustaining

o New features teams

• What

o Jira tickets

o Bug triage

o Roadmap planning

o Feature prioritization

• How

TSP for new feature development

Code Development Process

o TSP for new feature development

o Scrum for sustaining work

o Code review

o Automated build and test

• Landing

o After approvals and testing, landing request

o Gatekeepers land in maintenance or release branches

Code Review Process

• Patches are submitted to Gerritt for code review

• Gerritt initiates a Jenkins job to build Lustre for the entire coverage
matrix

• Jenkins initiates standard integration testing job using Xperior

• Jenkins posts results back to Gerritt

o Sets “Verified” flag in Gerrit ticket

• Gerritt adds appropriate git comments

MRP-691 ldiskfs: hold bitmaps to minimize reads during writes

The patch makes bitmap pages stay in correct LRUs to avoid
unnecessary page eviction and possible bitmap read during
bulk writes.
Change-Id: I70c2f44707a97822a2f9b13e74fae19753d50792
Signed-off-by: Alexey Lyashkov <alexey_lyashkov@xyratex.com>
Reviewed-on: http://morpheus.xyus.xyratex.com:8443/gerrit/135
Tested-by: Jenkins
Tested-by: Alexander Lezhoev <Alexander_Lezhoev@xyratex.com>
Reviewed-by: Alexander Boyko <Alexander_Boyko@xyratex.com>
Reviewed-by: Alexander Zarochentsev <alexander_zarochentsev@xyratex.com>
Reviewed-by: Nathan Rutman <Nathan_Rutman@xyratex.com>
Reviewed-by: Vitaly Fertman <Vitaly_Fertman@xyratex.com>

• Gerritt adds appropriate git comments

• Custom branches can also be
submitted for automated build and
testing

• Initiated via Jenkins

• System config in YAML (can be per-test)

• Set up cluster

o VM or real

• Install any required test packages

• Test(s) description in YAML

Testing with Xperior

• Test(s) description in YAML

• Results in YAML

• Open Source

Xperior plugins

• Plugins

o code coverage tool

o static verification tool

o reformat after every test

o store console output

o store lustre-diagnostics output

• Under development

o Random order test execution with
replay

o MDSIM test execution

o IPMI support

• Cherry-picking of bug fixes and features

o Risk/reward of selected new features only

• Regularly integrated into our maintenance branch

• Every bug fix and feature we develop is pushed upstream

o File a Jira ticket with Intel for each issue

o Include Xyratex-bug-id to patches and tickets for easy
reference

Code Reunification

reference

o Attach patches, respond to inspections, update code

o Sometimes there are conflicts

� Priorities

� Code conflicts

• We publish our tree at Github

Thank YouThank You

nathan_rutman@xyratex.com

