
EIOW – Exa-scale I/O workgroup
(exascale10)

Meghan McClelland
Peter Braam

Lug 2013

• Large scale data management
– is fundamentally broken
– but functions somewhat successfully as an awkward

patchwork

• Current practices
• Future needs
• What is wrong with current approaches?
• What framework can be built to handle this?

The Exa-scale IO Workgroup (EIOW) has has worked with
application developers and storage experts and made
exciting progress.

Problem Statement

2

• Let HPC application experts explain requirements for
next generation storage

• Architect, design, implement an open source set of exa-
scale I/O middleware

• So far around 40 participating organizations

EIOW (exascale10) mission

3

EIOW Participants (apologies – some probably omitted)

4

•  University of Paderborn
•  University of Mainz
•  Barcelona Supercomputing (BSC)
•  DDN
•  Fujitsu
•  TU Dresden
•  University of Tsukuba
•  Hamburg University
•  TACC
•  NCSA
•  HDF group
•  MPG/RZG
•  Juelich
•  Goethe Universitat Frankfurt
•  ZIH
•  DKRZ
•  Netapp

•  Tokyo Institute of Technology
•  Micron
•  Xyratex
•  DSSD
•  Sandia
•  PNNL
•  Cray
•  DOE
•  PSC
•  LRZ
•  HLRS
•  CEA
•  T-Platforms
•  Partec-EOFS
•  STFC
•  Intel
•  NEC

• EIOW is an open effort
– European Open File System (EOFS) supported workgroup

since inception
– A core EOFS project (like Lustre) since Sep 2012
– Everything is being published on the web

• And actively being copied and amended

– We will move in the direction of Internet Engineering
Task Force (IETF) style controlled openness

5

• EIOW intends to be a ubiquitous middleware
– An agreed, eventually standardized API for applications

& data management
– We hope to be an implementation of choice for

researchers to study, amend, influence and change
•  Such research projects are now numerous

– A storage access API allowing storage vendors to bolt it
onto their favorite data object and metadata stores

6

• There are 100’s of middleware
packages, sometimes layered

• Application developers regard
them as very useful and
convenient

• They generally are very difficult
to get working well

• This is not ready for future
hardware

• The stack isn’t working well

Middleware issues

7

Block Storage API

RAID

Parallel File System

MPI - IO

IO Middleware Layers (eg HDF5)

Application

• Proliferation of middleware packages – 100’s
– Many with a great deal of overlap
– MPI-IO, PLFS, HDF5, NetCDF, Hercule, …….

• Many have strengths and weaknesses
– E.g. HDF5 is very highly regarded
– Because there is no stack they are nearly impossible to

debug

• They re-implement major parts of file systems
– Leads to inefficiencies, incorrectness, huge code bases
– Nearly impossible to define HA properly

• Neither file systems nor middleware are ready for new
hardware – particularly memory class storage

Middleware issues

8

• 10PF
– handled by large (mostly Lustre) storage systems – 1TB/sec
– several billions of files

• 100PF
– Flash cache approach – 10 TB/sec
– Flash takes the bursts / Disks more continuously used
– Takes ~ 20,000 disks (0.5MW / lots of heat / lots of failed

drives)
– Probably a metadata server becomes a scalability limit

• 1EF – the gap
– The paradigm appears to break: 100K drives is not

acceptable
– Most data can no longer make it to disks
– What data management can help?

10PF – 100PF – 1EF

9

Big Data in the Military

10

UUVs

2000 Today 2010 2015 & Beyond

PREDATOR UAV VIDEO
GLOBAL HAWK DATA

Future Sensor X

Future Sensor Y

Large D
ata JC

TD

Future Sensor Z

1018

1012

1015

FIRESCOUT VTUAV DATA

Notional Gap

Warfighter
Problem

GIG Data Capacity (Services, Transport & Storage)

• Technology revolutions
– File system clients will have ~10,000 cores
– Architectures will be heterogeneous
– Flash and/or PCM storage leads to tiered storage
– Anti revolution – disks will only be a bit faster than today

• Tiered storage, in part memory class storage
• Data management to move less data to drives
• Scale performance 100x from today

Future Needs

11

• Pre-SQL (1972) databases were in this situation
– We need manageable API’s for unstructured data

• EIOW is an emerging framework
– Providing rich I/O and management interfaces
– Platform to build layered I/O applications efficiently,

correctly
•  E.g. HDF5 metadata without layering it on other file

systems
•  Logging and analytics through the stack
•  Transactions, data integrity through the stack
• Not a 1980’s approach to availability

• What we’ve seen is that most requirements can be
addressed as adding plugins to a base system

12

Component Decomposition

13

Simula'on	
 and	
 modeling:	

•  Batched	
 or	
 delayed	
 processing	

•  Input	
 is	
 opera5on	
 logs	
 (OL)	
 and	

analysis	
 data	
 (AD)	

OL	
 editor	

Simula/on	

Drivers	

Simula/on	

Engine	

Visualiza/on	

Interfaces	

Schema	
 &	
 Distributed	
 Containers	

•  Internal	
 format	
 descrip5ons	

•  Tables	

•  Rela5onships	

•  Layout,	
 performance,	
 ILM	

Interface	
 Collec/ons	

•  I/O,	
 MD,	
 transac5ons	

•  Schema	

•  Resource	
 mgmt	

•  FDMI	

RAS	

Data	

	
 collec/on	
 &	
 	

reduc/on	

Configura/on	

Management	

Availability	

(FDMI	
 plugin)	

Machine	
 Learning	
 (real	
 /me)	

OL, AD

Sample	
 Schemas	

NetCDF,	
 HDf5,	
 POSIX,	
 Hadoop	

Sample	
 FDMI	
 Plugins	

HSM,	
 Migra/on,	
 ILM,	
 FSCK,	
 Search/IDX	

Storage API:
Objects &
Distributed DB

Adaptive API’s

Applica5ons	
 /	
 Tools	
 /	
 Job	
 Scheduler	

API’s for I/O, schema use &
definition, management, ILM

Non Blocking Availability

14

• Failures will be common
– in very large systems

• Failover
– Wait until resource

recovers
– Doesn’t work well

•  Instead: focus on
availability

– No reply: change
resource

– Adapt layout
– Asynchronous cleanup

C2	
 	
 	
 	
 DS1	

Client	

C2	
 	
 	
 	
 DS3	
 C2	
 	
 	
 	
 DS2	

write

C2	
 	
 	
 	
 DS3	

MDS	

New
Layout

C2	
 	
 	
 	
 DS1	

Client	

C2	
 	
 	
 	
 DS3	
 C2	
 	
 	
 	
 DS2	

3. Client writes using
 new layout

Possible asynchronous rebuild

C2	
 	
 	
 	
 DS3	

2. Client changes layout

1. Client sees failure

Client	

HA

15

• Requirements Gathering
– 1st workshop (Munich 02/12)
– 2nd workshop (Portland 4/12)
– 3rd workshop (Tokyo 5/12)

• Architectural Design, Funding
– 4th workshop (Barcelona 9/12)

• Alternative Approaches
– 5th workshop (Salt Lake City 11/12)

• Design Discussion of Code Components
– 6th workshop (San Jose 2/13)

• Next workshop – Leipzig Germany June 20th 2013
•  Implementation Level Design, Future Efforts

Workshops

16

• Community – phone calls, new web site

• Prototype code is being developed
– Core system (schemas, interfaces, HA)
– Simulation / monitoring

• Evaluate ideas with prototypes
– Research proposals
– Evaluation in next generation systems

Current Efforts

17

A framework like SQL for HPC data / big data is 40 years
overdue

• We aim to change that….

Conclusion

18

Thank You
Meghan_Mcclelland@xyratex.com

EIOW Website:

https://sites.google.com/a/eiow.org/exascale-io-workgroup/

