
Lustre* - Fast Forward to Exascale
High Performance Data Division

 Eric Barton

18th April, 2013

2 Intel® High Performance Data Division

DOE Fast Forward IO and Storage

 Exascale R&D sponsored by 7 leading US national labs
– Solutions to currently intractable problems of Exascale required to meet the

2020 goal of an Exascale system

 Whamcloud & partners won the IO & Storage contract
– Proposal to rethink the whole HPC IO stack from top to bottom

• Develop a working prototype

• Demonstrate utility of prototype in HPC and Big Data

– HDF Group – HDF5 modifications and extensions

– EMC – Burst Buffer manager & I/O Dispatcher

– Whamcloud – Distributed Application Object Storage (DAOS)

– Cray – Scale out test

 Contract renegotiated on Intel acquisition of Whamcloud
– Intel – Arbitrary Connected Graph computation

– DDN – Versioning Object Storage Device

3 Intel® High Performance Data Division

Project Schedule

 8 project quarters from July 2012 through June 2014
– Quarterly milestones demonstrate progress in overlapping phases

– Planning – architecture – design – implementation – test – benchmark

 Project	Quarter
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
July	2012 Oct	2012 Jan	2013 April	2013 July	2013 Oct	2013 Jan	2014 April	2014

Planning
Solution	

Architecture

HDF	Demonstrations

IOD	Demonstrations

DAOS	Demonstrations

End-toEnd	Demo	

&	Reporting

Detailed	Design

ACG	Demonstrations

4 Intel® High Performance Data Division

Project Goals

 Make storage a tool of the Scientist
– Tractable management

– Comprehensive interaction

– Move compute to data or
data to compute as appropriate

 Overcome today’s IO limits
– Multi-petabyte datasets

– Shared file & metadata performance

– Horizontal scaling & jitter

 Support unprecedented fault tolerance
– Deterministic interactions with failing hardware & software

– Fast & scalable recovery

– Enable multiple redundancy & integrity schemes

5 Intel® High Performance Data Division

Non-blocking APIs

 Jitter
– Scheduling noise

– Power management

– Dynamic load imbalance

 Tight coupling
– Bulk synchronous programming simplifies application development

– Makes strong scaling harder

 Loose coupling
– Closes idle “gaps”

– Requires non-blocking IPC and IO

 All IO non-blocking
– Initiation procedure / completion event

P
ro

ce
ss

e
s

Time

6 Intel® High Performance Data Division

Collectives

 Scalable O(log n) group operations
– Open, commit…

 Push communications up the stack
– Higher levels may…

• Be able to piggyback on their own communications.

• Have access to higher performance communications.

 local2global / global2local
– Single process performs IO API call on behalf of process group

– local2global creates opaque shareable buffer

– global2local uses shareable buffer to bind local resources

7 Intel® High Performance Data Division

Locking & Caching

 Serialization kills scalability
– It’s not the storage system’s responsibility

 Storage is not message passing
– Tightly coupled processes should

communicate directly

 Low-level IO should not predict high level caching requirements
– Read-ahead / write behind is different from working set

 Avoid premature block alignment
– It’s a needless source of contention

 Don’t let writers block readers
– Or vice versa

8 Intel® High Performance Data Division

Atomicity

 Consistency & integrity guarantees
– Required throughout the I/O stack

– Required for data as well as metadata

• Metadata is data to the level below

– Cannot afford O(system size) recovery

 Transactions
– Move storage system between consistent states

– Recovery == rollback uncommitted transactions

• Prefer O(0) v. O(transaction size) recovery time

– Simplified interaction with failing subsystems for upper levels

– Nestable transactions required in a layered stack

– Scrub still required to protect against bitrot

Don’t FSCK with DAOS

9 Intel® High Performance Data Division

Transactions

 Transactions ordered by epoch #
– Writes apply in epoch order

– All writes in an epoch committed atomically

– All reads of an epoch see consistent data

 Applied within epoch scope
– Container granularity

– Multi-process and multi-object writes

– Single committer for each open scope

 Arbitrary transaction pipeline depth
– System may aggregate epochs

– Highest Committed Epoch (HCE) determined on epoch scope open

– “Slip” scope to check/wait for updates

Epoch #

W
ri

te
s

10 Intel® High Performance Data Division

Layered I/O stack

 Applications and tools
– Index, search, analysis, viz, browse, edit
– Analysis shipping
– In-transit analysis & visualization

 Application I/O API
– Multiple domain-specific API styles & schemas

 I/O Dispatcher
– Impedance match application requirements to storage capability
– Burst Buffer manager

 DAOS-HA
– High-availability scalable object storage
– Follow-project from Fast Forward

 DAOS
– Transactional scalable object storage

I/O Dispatcher

Application I/O

DAOS-HA

Application Tools Query

DAOS / Lustre Client

Lustre Server

11 Intel® High Performance Data Division

Scalable server health & collectives

 Health
– Gossip distributes “I’m alive”

• Fault tolerant

• O(log n) latency

 Tree overlay networks
– Fault tolerant

• Collective completes with failure on group membership change

– Scalable server communications

• Scalable commit

• Collective client eviction

• Distributed client health monitoring

12 Intel® High Performance Data Division

Versioned object storage

 COW & snapshot
– Transaction rollback

 Version intent log
– Applies writes in epoch order

 Writes persisted on arrival
– No serialisation / backpressure

– Full OSD blocks don’t have to move

 Extent metadata insert in epoch order
– Start immediately previous epochs complete

– On arrival when possible

– Otherwise via version intent log

13 Intel® High Performance Data Division

DAOS Containers

 Virtualizes Lustre’s underlying
object storage
– Shared-nothing

• 10s of billions of objects

• Thousands of servers

 Private object namespace / schema
– Filesystem namespace unpolluted

 Transactional PGAS
– Baseline: addr = <shard.object.offset>

– HA: addr = <layout.object.offset>

 Read & Write
– No create/destroy

– Punch == store 0s efficiently

O
b

je
ct

14 Intel® High Performance Data Division

I/O Dispatcher

 Abstracts Burst Buffer (NVRAM) and global (DAOS) storage

 I/O rate/latency/bandwidth matching
– Absorb peak application load
– Sustain global storage performance

 Layout optimization guided by upper layers
– Application object aggregation / sharding

• Stream transformation
• Semantic resharding
• Multi-format semantic replication

 Buffers transactions

 Higher-level resilience models
– Exploit redundancy across storage objects

 Scheduler integration
– Pre-staging / Post flushing

 End-to-end data integrity

15 Intel® High Performance Data Division

HDF5 Application I/O

 Built-for-HPC object database

 New application capabilities
– Non-blocking I/O

• Create/modify/delete HDF5 objects

• Read/write HDF5 Dataset elements

– Atomic transactions
• Group multiple HDF5 operations

 HDF5 Data Model Extensions
– Pluggable Indexing + Query Language

– Support for dynamic data structures

 New Storage Format
– Leverage I/O Dispatcher/DAOS capabilities

– End-to-end metadata+data integrity

16 Intel® High Performance Data Division

Big Data – Arbitrary Connected Graphs

 HDF5 Adaptation Layer (HAL)
– Storage API for ACG Ingress & Computation Kernel applications

– Stores partitioned graphs and associated information using HDF5

 ACG Ingress
– Extract meaningful information from raw data

– Transform data dependency information into a graph

– Partition graphs to maximize efficiency in handling and computation

• Graph Computation Kernel
• Machine Learning: LDA, CoEM, ALS, etc.

• Graph Analytics: PageRank, Triangle counting, Community structure

17 Intel® High Performance Data Division

Follow-on development

 Productization & system integration
– Job scheduler integration

• In-transit analysis runtime

• Analysis shipping runtime

– Monitoring and management

 Btrfs VOSD – in-kernel (GPL) storage target

 DAOS-HA – Replication / erasure coding
– IOD/HDF5-HA: Fault-tolerant Burst Buffer & IO forwarding

 Additional top-level APIs
– Application domain-specific – e.g. OODB, MapReduce etc.

– Layered over HDF5 or directly over IOD

– Associated tools

18 Intel® High Performance Data Division

1
8

