Architecture and Implementation of Lustre at the National Climate Computing Research Center

Douglas Fuller

National Climate Computing Research Center / ORNL

LUG 2011

About NCRC

- Partnership between Oak Ridge National Laboratory (USDOE) and NOAA (USDOC)
- Primary compute and working storage (Lustre!) at ORNL (Oak Ridge, TN)
- Primary users at Geophysical Fluid Dynamics Laboratory (Princeton, NJ)
- Operational in September 2010
- Upgrades through 2012, scheduled operations through 2014

Gaea Compute Platforms

- Phase 1: Cray XT6
 - 2,576 AMD Opteron 6174 ("Magny-Cours") processors
 - 260 TFLOPS
 - 80 TB main memory
 - Upgrade to XE6/360 TF in 2011

- Phase 2: Cray XE6
 - 5,200 AMD Opteron 16-core ("Interlagos") processors
 - 750 TFLOPS
 - 160TB main memory

File System Design: Requirements

- The obvious (capability, capacity, consistency, cost)
- Consistent performance
 - More production-oriented workload
 - High noise from compute and auxiliary functions
- Resiliency
 - Local component failures (nothing new)
 - Compute partition failures
 - WAN connectivity issues

System Specification

- Capability: projections from previous systems
 - Aggregate daily data production
 - Current code I/O duty cycles
 - Overhead from auxiliary operations
 - Delivered I/O from two primary partitions
- Capacity: fit the use cases that need performance
 - Scratch
 - Hot dataset cache
 - Semi-persistent library
 - Staging and buffering for WAN transfer

System Specification

- Consistency: use cases increase variability
 - Some demand capability (scratch, hot cache)
 - Significantly more random access
 - Some are more about capacity (library, staging)
 - More sequential access
- Cost: Always an issue
 - On a fixed budget, I/O robs compute
 - Capability costs compute resources (more I/O nodes)

Solution: Split it in two.

- Fast Scratch
 - 18x DDN SFA10000
 - 2,160 active 600GB SAS
 15000 RPM disks
 - 36 OSS
 - InfiniBand QDR

- Long Term Fast Scratch
 - 8x DDN SFA10000
 - 2,240 active 2TB SATA 7200 RPM disks
 - 16 OSS
 - InfiniBand QDR

8 Managed by UT-Battelle for the U.S. Department of Energy National Laboratory

LUG 2011

Implications

- Compute platform sees fast disk (FS)
 - Data staging is (hopefully) sequential and in the background
- Data staging done to bulk storage
 - Reduces cost for increased capacity
- Requires data staging step
- Leverage synergies where possible
 - Cross-connect between switches for redundancy
 - Combine data staging and some post-processing

Data Movers

- Local data transfer nodes (LDTN)
 - 16x servers with dual InfiniBand
 - ORNL-developed staging parallel/distributed cp
 - Also handles simple post-processing duties
- Remote data transfer nodes (RDTN)
 - 8x servers with InfiniBand and 10Gb Ethernet
 - Wide area transfer with GridFTP
- Implies significant data handling overhead for workflow

Thank You

Questions

Lustre on Cray XT/XE Systems

- Individual compute nodes act as Lustre clients
- Ind for internal network (ptllnd, gnilnd)
- I/O nodes can serve as OSS nodes ("internal") or route Inet to external network ("external")
- External configuration used at NCRC
 - Improves flexibility
 - Enables availability to other systems

