
Network Request Scheduler Scale Testing Results

Nikitas Angelinas

nikitas_angelinas@xyratex.com

2 04/23/2012

Agenda

 NRS background

 Aim of test runs

 Tools used

 Test results

 Future tasks

3 04/23/2012

NRS motivation

 Increased read and write throughput across the filesystem.

 Increased fairness amongst filesystem nodes, and better utilization of resources.

Clients.

OSTs.

Network.

 Deliberate and controlled unfairness amongst filesystem nodes; QoS semantics.

Client or export prioritization.

Guaranteed minimum and maximum throughput for a client.

4 04/23/2012

Foreword

NRS is a collaborative project between Whamcloud and Xyratex.

Code is at git://git.whamcloud.com/fs/lustre-dev.git repo, branch liang/b_nrs.

Jira ticket LU-398.

Is waiting for some large-scale testing.

It allows the PTLRPC layer to reorder the servicing of incoming RPCs.

We are mostly interested in bulk I/O RPCs.

Predominantly server-based, although the clients could play a part in some use cases.

5 04/23/2012

NRS policies

A binary heap data type is added to libcfs.

Used to implement prioritized queues of RPCs at the server.

Sorts large numbers of RPCs (10,000,000+) with minimal insertion/removal time.

FIFO - Logical wrapper around existing PTLRPC functionality.

Is the default policy for all RPC types.

CRR-E - Client Round Robin, RR over exports.

CRR-N - Client Round Robin, RR over NIDs.

ORR - Object Round Robin, RR over backend-fs objects, with request ordering according

to logical or physical offsets.

TRR - Target Round Robin, RR over OSTs, with request ordering according to logical or

physical offsets.

Client prioritization policy (not yet implemented).

QoS, or guaranteed availability policy (not yet implemented).

6 04/23/2012

NRS features

 Allows to select a different policy for each PTLRPC service.

Potentially separate on HP and normal requests in the future.

 Policies can be hot-swapped via lprocfs, while the system is handling I/O.

 Policies can fail handling a request:

Intentionally or unintentionally.

A failed request is handled by the FIFO policy.

FIFO cannot fail the processing of an RPC.

7 04/23/2012

Questions to be answered

Any performance regressions for the NRS framework with FIFO policy?

Scalability to a large number of clients?

Effective implementation of the algorithms?

Are other policies besides FIFO useful?

A given policy may aid performance in particular situations, while hindering performance

in other situations.

A given policy may also benefit more generic aspects of the filesystem workload.

Provide quantified answers to the above via a series of tests performed at large scale.

8 04/23/2012

Benchmarking environment

NRS code rebased on the same Git commit as vanilla; apples vs apples.

IOR for SSF and FPP runs of sequential I/O tests.

mdtest for file and directory operations metadata performance.

IOzone in clustered mode.

Multi-client test script using groups of dd processes.

1 Xyratex CS3000; 2 x OSS, 4 x OSTs each.

10 - 128 physical clients, depending on test case and resource availability.

Infiniband QDR fabric.

Larger scale tests performed at University of Cambridge; smaller scale tests performed in-

house.

9 04/23/2012

Performance regression with FIFO policy

IOR SSF and FPP, and mdtest runs.

Looking for major performance regressions; minor performance regressions would be

hidden by the variance between test runs.

So these tests aim to give us indications, but not definite assurance.

IOR FPP: IOR -v -a POSIX -i3 -g -e -w -W -r -b 16g -C -t 4m -F -o /mnt/lustre/testfile.fpp -O

lustreStripeCount=1 .

IOR SSF: IOR -v -a POSIX -i3 -g -e -w -W -r -b 16g -C -t 4m -o /mnt/lustre/testfile.ssf -O

lustreStripeCount=-1 .

mdtest: mdtest -u -d /mnt/lustre/mdtest{1-128} -n 32768 -i 3 .

10 04/23/2012

IOR FPP regression testing

0

500

1000

1500

2000

2500

3000

3500

4000

IOR FPP sequential 4MB I/O

128 clients, 1 thread per client

vanilla write FIFO write vanilla read FIFO read

M
B

/s
e

c

0

500

1000

1500

2000

2500

3000

3500

4000

IOR FPP sequential 4MB I/O

64 clients, 1 thread per client

vanilla write FIFO write vanilla read FIFO read

M
B

/s
e

c

11 04/23/2012

IOR SSF regression testing

0

500

1000

1500

2000

2500

3000

3500

4000

IOR SSF sequential 4MB I/O

128 clients, 1 thread per client

vanilla write FIFO write vanilla read FIFO read

M
B

/s
e

c

0

500

1000

1500

2000

2500

3000

3500

4000

IOR SSF sequential 4MB I/O

64 clients, 1 thread per client

vanilla write FIFO write vanilla read FIFO read

M
B

/s
e

c

12 04/23/2012

mdtest file and dir ops regression testing

0

10000

20000

30000

40000

50000

60000

70000

mdtest file operations

128 clients, 1 thread per client, 4.2 million files

vanilla
FIFO

create stat unlink

IO
P

S

0

10000

20000

30000

40000

50000

60000

70000

mdtest directory operations

128 clients, 1 thread per client, 4.2 million directories

vanilla
FIFO

create stat unlink

IO
P

S

13 04/23/2012

mdtest file and dir ops regression testing

0

10000

20000

30000

40000

50000

60000

70000

mdtest file operations

64 clients, 1 thread per client, 2.1 million files

vanilla
FIFO

create stat unlink

IO
P

S

0

10000

20000

30000

40000

50000

60000

70000

mdtest directory operations

64 clients, 1 thread per client, 2.1 million directories

vanilla
FIFO

create stat unlink

IO
P

S

14 04/23/2012

mdtest file and dir ops regression testing

0

10000

20000

30000

40000

50000

60000

70000

mdtest file operations

12 clients, 2 threads per client, 196608 files

vanilla

FIFO

create stat unlink

IO
P

S
s

0

10000

20000

30000

40000

50000

60000

70000

mdtest directory operations

12 clients, 2 threads per client, 196608 directories

vanilla
FIFO

create stat unlink

IO
P

S

15 04/23/2012

CRR-N dd-based investigation

Groups of dd processes.

Read test: dd if=/mnt/lustre/dd_client*/BIGFILE* of=/dev/null bs=1M .

Write test: dd if=/dev/zero of=/mnt/lustre/dd_client*/outfile* bs=1M .

Two series of test runs:

10 clients with 10 dd processes each.

9 clients with 11 dd processes, 1 client with 1 dd process.

Observe the effect of NRS CRR-N vs vanilla for the above test runs.

Measure throughput at each client.

Calculate standard deviation of throughput.

16 04/23/2012

CRR-N brw RPC distribution (dd test, 14 clients)

17 04/23/2012

dd write test - 10 clients, each with 10 processes

handler stdev throughput

vanilla 19.361 MB/sec 3469 MB/sec

CRR-N 0.425 MB/sec 3537.5 MB/sec

1 2 3 4 5 6 7 8 9 10
280

290

300

310

320

330

340

350

360

370

380

vanilla vs CRR-N

10 clients, 10 processes each, write test

vanilla

CRR-N

client

M
B

/s
e

c

18 04/23/2012

dd write test – 9 clients with 11 procs, client 4 with 1 proc

handler stdev (client 4 excluded) client 4 throughput

vanilla 22.756 MB/sec 49.2 MB/sec 3473.9 MB/sec

CRR-N 0.491 MB/sec 167 MB/sec 3444 MB/sec

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

vanilla vs CRR-N

9 clients 11 processes, 1 client 1 process, write test

vanilla

CRR-N

client

M
B

/s
e

c

19 04/23/2012

dd read test - 10 clients, each with 10 processes, 128 threads

handler stdev throughput

vanilla 6.156 MB/sec 2193.8 MB/sec

CRR-N 7.976 MB/sec 2054.6 MB/sec

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

vanilla vs CRR-N

10 clients, 10 processes each, read test

vanilla

CRR-N

client

M
B

/s
e

c

20 04/23/2012

dd read test - 9 clients with 11 procs, client 3 with 1 proc, 128
threads

handler stdev (client 3 excluded) client 3 throughput

vanilla 7.490 MB/sec 161 MB/sec 2229.2 MB/sec

CRR-N 8.455 MB/sec 169 MB/sec 2106.6 MB/sec

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

vanilla vs CRR-N

9 clients 11 processes, 1 client 1 process, read test

vanilla

CRR-N

client

M
B

/s
e

c

21 04/23/2012

IOR FPP - vanilla vs NRS with CRR-N policy

0
500

1000
1500
2000
2500
3000
3500
4000

IOR FPP sequential 4MB I/O

128 clients, 1 thread per client

vanilla write CRR-N write vanilla read CRR-N read

M
B

/s
e

c

0
500

1000
1500
2000
2500
3000
3500
4000

IOR FPP sequential 4MB I/O

64 clients, 1 thread per client

vanilla write CRR-N write vanilla read CRR-N read

M
B

/s
e

c

22 04/23/2012

IOR SSF - vanilla vs NRS with CRR-N policy

0
500

1000
1500
2000
2500
3000
3500
4000

IOR SSF sequential 4MB I/O

128 client, 1 thread per client

vanilla write CRR-N write vanilla read CRR-N read

M
B

/s
e

c

0
500

1000
1500
2000
2500
3000
3500
4000

IOR SSF sequential 4MB I/O

64 clients, 1 thread per client

vanilla write CRR-N write vanilla read CRR-N read

M
B

/s
e

c

23 04/23/2012

CRR-N comments

 CRR-N causes a significant lowering of the stdev of write throughput.

i.e. it 'evens things out'.

Many users will want this.

CRR-N shows a negative effect on dd test read operations, but IOR regression tests are

fine.

Worst case, reads could be routed to FIFO or other policy.

CRR-N may improve compute cluster performance when used with real jobs that do some

processing.

No performance regressions on IOR tests.

Confidence to deploy in real clusters and get real-world feedback.

 Future testing task is to see if these results scale.

24 04/23/2012

ORR/TRR policies

ORR serves bulk I/O RPCs (only OST_READs by default) in a Round Robin manner over

available backend-fs objects.

RPCs are grouped in per-object groups of 'RR quantum' size; lprocfs tunable.

Sorted within each group by logical of physical disk offset.

Physical offsets are calculated using extent information obtained via fiemap.

TRR performs the same scheduling, but in a Round Robin manner over available OSTs.

The main aim is to minimize drive seek operations, thus increasing read performance.

TRR should be able to help in cases where an OST is underutilized; this was not

straightforward to test.

25 04/23/2012

ORR (phys, 8) brw RPC distribution (IOR FPP test)

26 04/23/2012

TRR (phys, 8) brw RPC distribution (IOR FPP test)

27 04/23/2012

ORR/TRR policy tests

Using IOR to perform read tests; each IOR process reads 16 GB of data.

Kernel caches cleared between reads.

Performance is compared with vanilla and NRS FIFO for different TRR/ORR policy

parameters.

Tests with 1 process per client and 8 processes per client.

 Only 14 clients, read operations generate few RPCs.

ost_io.threads_max=128 on both OSS nodes.

The OSS nodes are not totally saturated with this number of clients.

28 04/23/2012

ORR/TRR policy IOR FPP read

vanilla: 3092.91 MB/sec
FIFO: 3102.17 MB/sec
ORR log 256: 3146.97 MB/sec
ORR phys 256: 3150.86 MB/sec
TRR log 256: 3164.66 MB/sec
TRR phys 256: 3268.98 MB/sec

vanilla FIFO ORR log 256 ORR phys 256 TRR log 256 TRR phys 256
3000

3050

3100

3150

3200

3250

3300

IOR FPP sequential read, 1MB I/O

14 clients, 1 thread per client, 16 GB file per thread

M
B

/s
e

c

29 04/23/2012

ORR/TRR policy IOR SSF read

vanilla FIFO ORR log 256 ORR phys 256 TRR log 256 TRR phys 256
2500

2550

2600

2650

2700

2750

2800

IOR SSF sequential read, 1MB I/O

14 clients, 1 thread per client, 16 GB file per thread

M
B

/s
e

c

vanilla: 2744.15 MB/sec
FIFO: 2741.78 MB/sec
ORR log 256: 2689.12 MB/sec
ORR phys 256: 2728.89 MB/sec
TRR log 256: 2684.42 MB/sec
TRR phys 256: 2720.96 MB/sec

30 04/23/2012

ORR/TRR policy IOR FPP read

vanilla FIFO ORR log 256 ORR phys 256 TRR log 256 TRR phys 256
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

IOR FPP sequential read, 1MB I/O

14 clients, 8 threads per client, 16 GB file per thread

M
B

/s
e

c

vanilla: 2274.55 MB/sec
FIFO: 2248.62 MB/sec
ORR log 256: 2432.78 MB/sec
ORR phys 256: 2424.69 MB/sec
TRR log 256: 1540.82 MB/sec
TRR phys 256: 1778.56 MB/sec

31 04/23/2012

ORR/TRR policy IOR SSF read

vanilla FIFO ORR log 256 ORR phys 256 TRR log 256 TRR phys 256
0

500

1000

1500

2000

2500

IOR SSF sequential read, 1MB I/O

14 clients, 8 threads per client, 16 GB file per thread

M
B

/s
e

c

vanilla: 2260.37 MB/sec
FIFO: 2257.9 MB/sec
ORR log 256: 1089.385 MB/sec
ORR phys 256: 1236.72 MB/sec
TRR log 256: 1086.18 MB/sec
TRR phys 256: 1258.907 MB/sec

32 04/23/2012

IOzone read test – all policies

vanilla FIFO CRR-N ORR log 256 ORR phys 256 TRR log 256 TRR phys 256
3000

3100

3200

3300

3400

3500

3600

3700

3800

IOzone read, 1MB, 16GB per process

14 clients, 1 process per client

M
B

/s
e

c

33 04/23/2012

IOzone read test – throughput per process

14 clients, 1 process per client

handler min (MB/sec) max (MB/sec)

vanilla 190.18 606.87

FIFO 191.51 618.05

CRR-N 188.79 513.87

ORR (log, 256) 198.8 425.27

ORR (phys, 256) 198.8 418.85

TRR (log, 256) 208.48 476.55

TRR (phys, 256) 217.56 488.25

34 04/23/2012

ORR/TRR policy tests, large readahead

Only 14 clients, for 512 ost_io threads tests, increase number of RPCs by:

max_read_ahead_mb=256

max_read_ahead_per_file_mb=256

These lead to curious results.
Tests were without the LU-983 fix for readahead.

35 04/23/2012

ORR/TRR policy IOR FPP read, large readahead

vanilla FIFO ORR log 256 ORR phys 256 TRR log 256 TRR phys 256
3000

3100

3200

3300

3400

3500

3600

3700

3800

3900

4000

IOR FPP sequential read, 1MB I/O

14 clients, 1 thread per client, 32 GB file per thread

M
B

/s
e

c

vanilla: 3219.73 MB/sec
FIFO: 3252.52 MB/sec
ORR log 256: 3396.07 MB/sec
ORR phys 256: 3398.86 MB/sec
TRR log 256: 3512.55 MB/sec
TRR phys 256: 3602.22 MB/sec

36 04/23/2012

TRR (physical, 256) IOR FPP read, large readahead

8 16 32 64 128 256 512 1024
2900

3000

3100

3200

3300

3400

3500

3600

3700

IOR FPP sequential read, 1MB I/O

14 clients, 1 thread per client, 32 GB file per thread

RR quantum

M
B

/s
e

c

Performance is highest at a ~ 512 quantum size.

The exact number may vary between workloads.

37 04/23/2012

ORR/TRR IOR SSF read test, large readahead

vanilla: 3404.8 MB/sec
FIFO: 3364.2 MB/sec
ORR log 256: 3138.4 MB/sec
ORR phys 256: 3293.1 MB/sec
TRR log 256: 3165.3 MB/sec
TRR phys 256: 3285.5 MB/sec

vanilla FIFO ORR log 256 ORR phys 256 TRR log 256 TRR phys 256
3000

3050

3100

3150

3200

3250

3300

3350

3400

3450

IOR SSF sequential read, 1MB I/O

14 clients, 1 thread per client, 448 GiB file

M
B

/s
e

c

38 04/23/2012

Notes on ORR and TRR policies

TRR/ORR increase performance in some test cases, but decrease it in others.

TRR/ORR may improve the performance of small and/or random reads.

Random reads produce a small number of RPCs with few clients, so this was not

tested.

TRR may improve the performance of widely striped file reads.

Only 8 OSTs were available for these tests, so this was not tested.

ORR/TRR may improve the performance of backward reads.

Again, few RPCs were generated for this test, so this was not tested.

TRR on a multi-layered NRS policy environment can be simplified.

ORR policy will need an LRU-based or similar method for object destruction; TRR much

less so.

TRR and ORR should be less (if at all) beneficial on SSD-based OSTs.

39 04/23/2012

Test results summary

The NRS framework with FIFO policy: no significant performance regressions.

Data and metadata operations tested at reasonably large scale.

The CRR-N and ORR/TRR policies look promising for some use cases; CRR-N tends to

smooth reads out, ORR/TRR improve performance for reads in some test cases.

May be useful in specific scenarios, or for more generic usage.

We may get the best of policies when they are combined in a multi-layer NRS

arrangement.

 Further testing may be required.

CRR-N and ORR/TRR benefits at larger scale.

We ran out of large-scale resources for LUG, but will follow up on this presentation with

more results.

40 04/23/2012

Future tasks

Decide whether the NRS framework with FIFO policy and perhaps others, can land soon.

Work out a test plan with the community if further testing is required.

We should be able to perform testing at larger scale soon.

Two policies operating at the same time should be useful.

NRS policies as separate kernel modules?

QoS policy.

Nikitas Angelinas

nikitas_angelinas@xyratex.com

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

