
OpenSFS TWG Lustre Requirements
This document summarizes requirements for new Lustre features, which the OpenSFS
Technical Working Group (TWG) gathered from the community in early 2011. Based on these
findings, the TWG recommends development of features to address requirements of immediate
importance to the OpenSFS membership.

Table of Contents:

OpenSFS TWG Lustre Requirements
Recommendations to the OpenSFS Board

Near-term requirements
Foundational Requirements

Gathered Requirements
Required Rates and Capacities
Performance Requirements

Metadata server performance
Metadata server scalability
Single file performance
Quality of service
Locality and scalability
LNET channel bonding

Foundational Requirements
Support for alternate backend file systems
Backend storage investigation
Scalable fault management

Manageability and Administrative Requirements
Better support for newer kernels
Improved configuration of Lustre
Allowing for controlled partial-system maintenance
Balancing storage use
Adaptive storage layout
Arbitrary OST assignment
Better userspace tools
File system consistency checks
Snapshots
User Identity Mapping

Application Interface Requirements
Improved storage semantics/interfaces
Better user tool API

Other Requirements
Varying page-sizes
Mixed endian support

OpenSFS TWG 2011 Requirements 3/22/2011

IPv6

Recommendations to the OpenSFS Board
A complete listing of requirements gathered over the last several months follows this section.
During the course of our investigation, we identified near-term requirements for improving
Lustre performance, scalability, manageability, and administration. From this list, the TWG has
identified requirements for Lustre metadata performance and scalability as being of the most
immediate benefit to its members’ needs.

In addition, the TWG members expect OpenSFS to take a broad view and consider work
that needs to be done in Lustre to pave the way for future functionality. Investment in these
foundational requirements will resolve some of the remaining technical debt in the Lustre code
and set the stage for feature deliveries in the 2013-2014 time frame.

Near-term requirements
1. improve metadata server performance
2. improve metadata server scalability

Foundational Requirements
1. support for alternate backend file systems
2. scalable fault management
3. backend storage investigation

At this time, the TWG recommends that OpenSFS pursue RFPs for both performance and
foundational requirements, focusing on at least one requirement from the prioritized categories
above. These requirements have been discussed by the members of the TWG and the ordering
has been reached by consensus.

Gathered Requirements

Required Rates and Capacities
This section describes specific requirements for file system performance and scalabilty that the
community thinks Lustre will need to accommodate HPC systems in the near term (2012) and
beyond (2014).

Metric
Lustre
2.0/2.11 Q2 2012 Q1 2014

maximum number of files in file system 4 billion 100 billion 1 trillion

OpenSFS TWG 2011 Requirements 3/22/2011

maximum number of files in directory 10 million 50 million 10 billion

maximum number of subdirectories 10 million 1 million 10 million

maximum number of clients 131072 64 thousand 128 thousand

maximum number of OSS nodes - 1 thousand 4 thousand

maximum number of OSTs 8150 2 thousand 8 thousand

maximum OST size 16 TB 32 TB 128 TB

maximum file system size 64 PB 100 PB 256 PB

maximum file size 320 TB 1 PB -

maximum object size 2 TB 16 TB 64 TB

peak aggregate file creates/s - 200 thousand 400 thousand

peak directory listings/s (ls -l) - - 100 thousand

maximum single client open files ~3 thousand2 100 thousand -

peak single client file creates/s - 30 thousand -
1 source : Lustre 2.0 Manual, Table 5-1
2 ”Lustre does not impose a maximum for the number of open files, but the practical limit

depends on the amount of RAM on the MDS. No "tables" for open files exist on the MDS, as
they are only linked in a list to a given client's export. Each client process probably has a limit
of several thousands of open files which depends on the ulimit.”

Performance Requirements
The requirements in this section address limitations to Lustre which the TWG believes can be
addressed through immediate development. Deliverables that meet these requirements should
provide immediate benefits.

Metadata server performance
Interactive workloads (ls -l, du) do not perform as well with Lustre as they do on local file
systems. The MDS software architecture has not kept pace with the capabilities of current
multicore hardware architectures. It is a requirement that the MDS be capable of using
efficiently all of the compute resources available on commodity server platforms.

Metadata server scalability
The single metadata server is Lustre's greatest architectural liability. The file system provides

OpenSFS TWG 2011 Requirements 3/22/2011

http://www.google.com/url?q=http%3A%2F%2Fwiki.lustre.org%2Fmanual%2FLustreManual20_HTML%2FSettingUpLustreSystem.html%2350438256_27068&sa=D&sntz=1&usg=AFQjCNHvmfa_Bo9-w2E0K9ZaJhGIOL9HEg
http://www.google.com/url?q=http%3A%2F%2Fwiki.lustre.org%2Fmanual%2FLustreManual20_HTML%2FSettingUpLustreSystem.html%2350438256_27068&sa=D&sntz=1&usg=AFQjCNHvmfa_Bo9-w2E0K9ZaJhGIOL9HEg
http://www.google.com/url?q=http%3A%2F%2Fwiki.lustre.org%2Fmanual%2FLustreManual20_HTML%2FSettingUpLustreSystem.html%2350438256_27068&sa=D&sntz=1&usg=AFQjCNHvmfa_Bo9-w2E0K9ZaJhGIOL9HEg
http://www.google.com/url?q=http%3A%2F%2Fwiki.lustre.org%2Fmanual%2FLustreManual20_HTML%2FSettingUpLustreSystem.html%2350438256_27068&sa=D&sntz=1&usg=AFQjCNHvmfa_Bo9-w2E0K9ZaJhGIOL9HEg
http://www.google.com/url?q=http%3A%2F%2Fwiki.lustre.org%2Fmanual%2FLustreManual20_HTML%2FSettingUpLustreSystem.html%2350438256_27068&sa=D&sntz=1&usg=AFQjCNHvmfa_Bo9-w2E0K9ZaJhGIOL9HEg
http://www.google.com/url?q=http%3A%2F%2Fwiki.lustre.org%2Fmanual%2FLustreManual20_HTML%2FSettingUpLustreSystem.html%2350438256_27068&sa=D&sntz=1&usg=AFQjCNHvmfa_Bo9-w2E0K9ZaJhGIOL9HEg

horizontal scalability of the data store across multiple object storage servers, but the metadata
services are still limited to a single metadata server. Lustre performance and capacity can be
improved by enabling horizontal scale-out of the MDS, allowing the file system namespace to
be distributed. Maximal performance will result when directories themselves can be distributed
across multiple MDS hosts.

Single file performance
Users desire single, shared files for more sane file management, though this does not always
provide the best performance due to locking and other implementation issues. Lustre must allow
single files to take full advantage of capabilities of the storage system, and must have interfaces
that allow users to exploit their knowledge of their IO patterns.

Quality of service
Existing deployments currently have no mechanism to balance the performance needs of
interactive users against the needs of large-scale compute jobs. For example, it is possible and
likely that directory listings will encounter absurdly long execution times when competing against
a 200,000 core checkpoint operation. To maintain usability in such scenarios, Lustre must be
able to allocate a {job,cluster,user} a share of IOPS and bandwidth consummate with the priority
levels assigned by an administrator.

Locality and scalability
Large systems will need to use client locality to determine the OSSs for storage in order to avoid
contention across the interconnect. Locality should allow clients to reduce the time they spend
checking the status of all servers in the file system.

LNET channel bonding
LNET routers are currently limited to a single channel provided by a single instance of the LND.
This restriction limits bandwidth and reliability of an LNET router to a single interconnect. LNET
should allow multiple LNDs to be bonded as a group in order to provide increased bandwidth
and increased availability.

Foundational Requirements
The following describes requirements of Lustre to meet future needs. Investment in one of these
technologies now, will provide the foundation for features needed for Lustre to achieve the next
levels of performance.

Support for alternate backend file systems
Ldiskfs is at the limits of its useful life. Selection of an alternate backend store is impossible
unless Lustre supports interchangeable backend file systems. Lustre engineers had started a
project to create a backend abstraction for arbitrary Object Storage Devices (OSDs). This effort
was not completed. There remains considerable code reorganization to facilitate interoperability

OpenSFS TWG 2011 Requirements 3/22/2011

with different backend devices whether through OSD or some other interface.

Backend storage investigation
To accommodate the capacities above, the backend store must expand beyond current ldiskfs
limits (eg 32TB LUN sizes). We seek backend solutions that improve Lustre reliability and
resiliency. LLNL is pursuing ZFS as an ldiskfs replacement. Btrfs has many features in
common with ZFS. It is of interest because it is licensed under the GPL and included with
Linux.

Assuming that Lustre can be restructured to accommodate alternate backend stores, we need
to investigate alternative file systems to understand their architecture, layering, stability, and
performance. These baseline investigations should be completed _before_ there any attempts
to implement an OSD interface for the file system.

Scalable fault management
While it is already the case that today's supercomputers have a marked dependence on their
file systems for productive use, this dependency will continue to rise as we see more and
more center-wide file systems. To minimize the downtime for the entire center, reliability must
increase and recovery from faults must be bounded in time. Lustre must be able to recover in
O(log n) time or better as a mid-term goal to meet this requirement.

Lustre must expose errors it detects to standard administrative infrastructures. We cannot
continue with error logs as being used today. Instead, Lustre must detect, collect, and
parse faults then distribute the errors in a scalable manner to the administrative interface for
notification.

Manageability and Administrative Requirements
The requirements in this section highlight areas of improvement for Lustre in order to reduce the
administrative burden or address shortcomings in its integration to the computing environment.

Better support for newer kernels
Security updates for Lustre kernels remain a sore point for system administrators. Using
patches to the kernel on the server side introduces a potential delay to rolling out updates. In
addition, newer releases require new kernel revisions to be supported. Lustre must reduce or
eliminate its need to patch the kernel on the server, and must support the newer kernels in
RHEL6 as a minimum, and should support recent kernel.org kernels.

Improved configuration of Lustre
The current mechanism of using module parameters is relatively inflexible and can constrain
large, complex Lustre configurations. As a short- to mid-term requirement, Lustre must have
the ability to allow dynamic configuration of the LNET interfaces and routes. This ability should

OpenSFS TWG 2011 Requirements 3/22/2011

include the ability to bind targets (OST/MDT/etc) to specific LNET interfaces, and to hot-add or
hot-remove LNET interfaces.

Allowing for controlled partial-system maintenance
Currently, to upgrade a Lustre installation or perform maintenance on a subset of the comprising
hardware, one must unmount the filesystem from all clients or risk hanging processes until
the hardware is back online (maintenance) or other odd, undefined client behavior once the
upgrade completes. To allow more flexible administration, the file system must be able to
handle these situations gracefully, and allow the clients to avoid attempting to use hardware
known to be down.

Balancing storage use
Currently, ensuring a balanced use of the storage space available to Lustre relies on a
haphazard set of setting default striping, storage pools, and manual rebalancing of overfull
OSTs. As a mid-term goal, Lustre must be able to allow automatic emptying of an OST,
migrating the data to other devices in the filesystem. Similarly, Lustre must be able to rebalance
the storage load over new OSTs as they are added. Additionally, Lustre must be able to require
authorization for use of specific storage pools.

Adaptive storage layout
Users are often confused by the relationship between maximum file size and object count. In
addition, they often make poor striping choices, causing massive imbalances in OST use. Lustre
should have the ability to adapt the storage layout of the file as it grows and/or ages, such as
adding more objects as needed. This adaptive layout should be able to be set as the default
striping pattern by administrators, but must not preclude knowledgeable users from continuing
to set a specific layout. Additionally, users must be able to specify the exact layout of the file if
so desired, to include specific OSTs and their order in the striping.

Arbitrary OST assignment
Lustre should allow specific stripes to be assigned to specific OSTs rather than just heuristically.
This has a potential impact on WAN operations.

Better userspace tools
The lctl command is confusing to use, with mixes of fixed and non-fixed positional parameters,
and poor documentation. Further, the output of many of the sub commands are not particularly
well designed, making them both difficult to read for a human, and difficult to parse by
command-line scripting. We desire clean, well-designed command line interfaces.

File system consistency checks
Compute centers can ill-afford the downtime required to ensure the consistency of Lustre
or its backing file systems. There must be online integrity check and repair processes
that can continually run in the background to verify the consistency of both file systems.
These processes must identify and repair various inconsistencies including, but not limited
to, orphaned and missing data objects. The processes should have low impact on normal

OpenSFS TWG 2011 Requirements 3/22/2011

operations of the file system.

Snapshots
While backing up a large scale Lustre file system to offline storage may not be a practical
endeavor, allowing the possibility is a desirable goal. To support this activity, Lustre must be
able to efficiently quiesce the the file system and make a stable snapshot. Snapshots made in
this way must be easily accessible to users -- subject to normal access control measures -- to
allow easy recovery from simple mistakes without requiring administrator assistance.

User Identity Mapping
As Lustre use expands over the WAN into environments that have differing models of user
management, there is a growing need to map identities from one management domain to
another, on a per-NID basis. This mapping must be performed in such a manner that continued
operation of Lustre's quota system is achieved.

Application Interface Requirements
The requirements in this section highlight areas of improvement for Lustre in order to reduce the
overheads experienced by applications, both in development and in operation.

Improved storage semantics/interfaces
Lustre should explore alternatives to POSIX access methods that can be used to support
exascale file sytem requirements. At the scales of today's large systems -- and as those
scales are expected to grow in the future -- the familiar semantics of POSIX incur challenges to
developers seeking to extract maximum performance from the hardware. In the future, Lustre
must allow developers to avoid the performance pitfalls -- both by improving the performance
when operating in POSIX mode, or by allowing one to tell the system "I know what I am doing"
and step outside of those semantics. Applications should be able to inform Lustre that they do
not need the locking implied to reach POSIX semantics and/or give hints to the file system as to
what their usage pattern is expected to look like. Applications should be able to submit requests
that avoid copies without blocking on the completion of those requests.

Better user tool API
llapi as it exists now is really largely the internals of the lfs command. As a result, many of the
functions print directly to stdout, which does not lend itself to reusablity. We desire clean APIs
which can be used by many programs to interact with lustre to gather and present data in a
format of the program's own choosing.

Other Requirements
These requirements do not properly fit into other categories, but remain important as Lustre and
the hardware it runs on continue to evolve.

OpenSFS TWG 2011 Requirements 3/22/2011

Varying page-sizes
Lustre must allow clients and servers to use different page sizes. We expect smaller pages
on the client as compared to the server, but future hardware may challenge this expectation.
Lustre should strive for flexibility in this area, and allow for heterogeneous page sizes among
concurrently connected clients and servers.

Mixed endian support
The two platforms with the largest share of the HPC market have differing byte orders. In
order to extend the benefits of sharing storage between multiple systems to shops supporting
both platforms, Lustre must be able to interoperate seamlessly between clients and servers of
differing byte orders. Long-term, Lustre should support servers on either byte ordering.

IPv6
Support for IPv6 requires a change in the NID format to accommodate a 128bit IPv6 address in
the address-within-network field. This affects all protocol levels: LNDs, LNET and Lustre.

OpenSFS TWG 2011 Requirements 3/22/2011

